
Timing Analysis of Cyclic Combinational Circuits*

Marc D. Riedel and Jehoshua Bruck

California Institute of Technology

Mail Code 136-93, Pasadena, CA 91125

E-mail: {riedel, bruck}@paradise.caltech.edu

Abstract— The accepted wisdom is that combi-
national circuits must have acyclic (i.e., loop-free
or feed-forward) topologies. And yet simple exam-
ples suggest that this need not be so. In previous
work, we advocated the design of cyclic combina-
tional circuits (i.e., circuits with loops or feedback
paths). We proposed a methodology for analyzing
and synthesizing such circuits, with an emphasis
on the optimization of area.

In this paper, we extend our methodology into
the temporal realm. We characterize the true de-
lay of cyclic circuits through symbolic event prop-
agation in the floating mode of operation, according
to the up-bounded inertial delay model. We present
analysis results for circuits optimized with our pro-
gram CYCLIFY. Some benchmark circuits were op-
timized significantly, with simultaneous improve-
ments of up to 10% in the area and 25% in the
delay.

I. Introduction

A collection of logic gates forms a combinational

circuit if the outputs can be described as boolean
functions of the current input values only. A common
misconception is that combinational circuits must
have acyclic topologies; that is to say, they must be
designed without any loops or feedback paths. In fact,
the idea that “combinational” and “acyclic” are syn-
onymous terms is so thoroughly ingrained that many
textbooks provide the latter as a definition of the for-
mer.

And yet, circuits with cyclic topologies can be com-
binational. Examples are shown in Figures 1 and 5.
How can we characterize the temporal behavior of
such circuits?

In the conventional view, timing analysis is predi-
cated on a topological ordering. The computation of
arrival times proceeds from the gates at the top of the
ordering – those connected only to primary inputs –
down to those at the bottom – those producing the
primary outputs.

∗This work is supported in part by a grant from the National
Human Genome Research Institute (Grant no. P50 HG02370).

With a cyclic circuit, where do we begin?

Example 1

The circuit in Figure 1 consists of six AND and OR

gates, with two primary outputs, f1 and f2, and five
primary inputs a, b, c, d and x (note that the input
x is repeated).

�

�

�
�

�

���

� �

���

�

�

�
�

�

� �

���

� �

�
�

�
�

�
�

�
�

�
�

�
�

PSfrag replacements

f1
f2
f3
f4

Fig. 1. A cyclic combinational circuit.

Since the gates in this example are connected in a
cycle, we cannot establish an ordering a priori. And
yet, consider what happens when we apply specific
input values. (Assume that the gates each have a
delay bound of 1 time unit.)

• If x = 0, then gate g1 produces a value of 0 after one
time unit, since 0 is a controlling value for an AND

gate. In this case, the gates may be ordered

g1 → g2 → g3 → g4 → g5 → g6.



Outputs arrive at f1 and f2 after at most 3 and at
most 6 time units, respectively.

• If x = 1, then gate g4 produces a value of 1 after
one time unit, since 1 is a controlling value for an OR

gate. In this case, the gates may be ordered

g4 → g5 → g6 → g1 → g2 → g3.

Outputs arrive at f1 and f2 after at most 6 and at
most 3 time units, respectively.

In both cases the outputs may arrive earlier, depend-
ing on the values of a, b, c and d.

We conclude that the circuit is combinational – x

must assume one of these two values – and that the
maximum delay is 6 time units. It may be shown that
the circuit implements the functions 1

f1 = b(a + x(d + c)),

f2 = d + c(x + b a).

Note that both functions depend on all 5 variables. It
may be shown that if we implement these functions
with an acyclic circuit, at least 8 fan-in two gates are
required.

A. Related Work

In an earlier era, theoreticians commented on the
possibility of having cycles in combinational logic,
and conjectured that this might be a useful prop-
erty [6], [7], [19]. Both McCaw and Rivest pre-
sented examples of cyclic circuits with provably fewer
gates than is possible with equivalent acyclic cir-
cuits [11], [16]. (We have extended and generalized
these theoretical results. Most notably, we have con-
structed a family of circuits with cyclic topologies
having half as many gates as is possible with acyclic
topologies [15]).

In a later era, practitioners observed that cycles
sometimes appear in combinational circuits synthe-
sized from high-level descriptions. Stok noted that
cycles are occasionally introduced during resource-
sharing optimizations at the level of functional
units [20]. However, most synthesis and verification
tools balk when given combinational logic with cycles.
The accepted strategy has been to simply disallow cy-
cles in the high-level phases.

Motivated by Stok’s observation, Malik discussed
analysis techniques for cyclic circuits [10]. He formu-

1We use the standard notation: addition (+) denotes disjunc-
tion (OR), multiplication (·) denotes conjunction (AND), and
an overbar (x̄) denotes negation (NOT).

lated a symbolic analysis algorithm based on ternary-
valued simulation. Shiple refined and formalized Ma-
lik’s results, and extended the concepts to combina-
tional logic embedded in sequential circuits [18].

Malik discussed timing analysis of cyclic circuits,
but concluded that the problem of computing the
true delay of sensitizable paths is unmanageable. In-
stead, he proposed a topological approach, beginning
with a transformation from a cyclic specification to an
equivalent acyclic one. Recently, Edwards presented
work in a similar vein [5]. However, as Malik and Ed-
wards admitted, unraveling cyclic circuits this way is
an inherently complex problem. It does not scale well,
and is particularly ill-suited for circuits with deeply-
nested cyclic topologies.

B. Contributions

In previous work, we advocated the design of com-
binational circuits with cycles, and demonstrated that
such an approach permits significant optimizations of
area. We discussed analysis techniques for validat-
ing cyclic circuits [13], and suggested synthesis strate-
gies [14]. In this work, we extend our methodology
into the temporal realm.

We characterize the timing of circuits according
to a standard model, described in Section I-C: the
gates operate in the so-called floating mode, with up-

bounded inertial delays [4].

Instead of a path-based approach, we compute ar-
rival times through event propagation [1], [21]. Of
course, we do not apply this process exhaustively
for all possible input assignments. Rather we per-
form the computation symbolically, with decision dia-
grams [2], [9]. In Section II, we describe the algorithm
and illustrate its application on examples.

Our approach is not a radical departure from exist-
ing practice. In fact, the salient message of this paper
is that well-developed techniques for timing analysis
can readily be applied to cyclic circuits.

We have incorporated timing analysis into our
cyclic optimization program, called CYCLIFY, built
within the Berkeley SIS environment [17]. Although
not the primary focus of this paper, in Section III we
discuss synthesis strategies targeting delay. Our pre-
vious work was limited to cyclic optimizations in the
re-structuring and minimization phases of synthesis.
In our current work, we extend these optimizations to
the decomposition and technology mapping phases.

For the synthesis results in Section III, we applied
the standard “script.delay” optimization sequence,
followed by mapping to NAND2/NOR2 gates. In trials



with benchmarks, we achieved simultaneous improve-
ments of up to 10% in the area and 25% in the delay,
as compared to the standard SIS optimizations.

C. Circuit Model

The concepts discussed in this paper are not tied
to any particular physical model or computing sub-
strate. In our discussion of timing analysis, the ex-
position is at a symbolic level, that is to say, in terms
of boolean expressions. However, we first discuss the
circuit model in an explicit sense – in terms of signal
values.

We work with the digital abstraction of zeros and
ones. Nevertheless, our model recognizes that the
underlying signals are, in fact, analog: each signal
is a continuous real-valued function of time, corre-
sponding to a voltage level. For analysis, we adopt a
ternary framework, extending the set of boolean values�

= {0, 1} to the set of ternary values � = {0, 1,⊥}.
Here ⊥ represents either an ambiguous value, e.g., a
voltage value between logical 0 and logical 1, or else
an uncertain value, i.e., a signal that might be 0 or 1
– but we do not know which.

The idea of three-valued logic for circuit analysis
is well established. It was originally proposed for the
analysis of hazards in combinational logic [22]. Bryant
popularized its use for verification [3], and it has been
widely adopted for the analysis of asynchronous cir-
cuits [4]. For a theoretical treatment, see [12]. Malik
and Shiple discuss the analysis of cyclic circuits in
this framework [10], [18].

Central to timing analysis is the concept of control-

ling values. In Riedel’s Ph.D. dissertation, a formal-
ism is presented for computing the controlling val-
ues of arbitrary logic functions using the so-called
marginal operator [15]. For simplicity, in this paper
we assume that the network has been decomposed
into primitive gates, namely AND/OR/NAND/NOR

gates and inverters. Recall that 0 is the controlling
value for an AND gate, as shown in Figure 2. Simi-
larly, 1 is the controlling value for an OR gate.

Our analysis characterizes the functional and tem-
poral behavior of circuits according to the so-called
floating-mode assumption [4]: at the outset, all wires
in a circuit are assumed to have unknown or possi-
bly undefined values, and so assigned the value ⊥.
Although conservative, this assumption ensures that
the analysis does not infer stability in cases where
ambiguous or unstable signals might persist.

Consider the circuit fragment in Figure 3. One
might be tempted to reason as follows: The output of

⊥ �����

⊥
⊥

�����

���	�

PSfrag replacements

f1
f2
f3
f4

Fig. 2. An AND gate with 0, 1, and ⊥ inputs.

the AND gate g1 is fed in complemented and uncom-
plemented form into the OR gate g2. Thus, one of the
inputs to the OR gate must be 1, and so its output
must be 1.

And yet, by definition, ⊥ designates an unde-

fined value. For instance, it could indicate a voltage
value exactly half way between logical 0 and logical
1. Within the floating-mode framework, we remain
agnostic: the output of the OR gate is ⊥.

�

⊥ ⊥
⊥

��

�
�

� � �

�
�

⊥

⊥

PSfrag replacements

f1
f2
f3
f4

Fig. 3. An illustration of the floating mode.

We assume an idealized model for timing analy-
sis: each gate is characterized by a single parameter,
a bound on its delay td. If a gate’s inputs assume
controlling values by time t, then the gate’s output
assumes a definite value between time t (i.e., immedi-
ately) and time t + td. This is called the up-bounded

inertial delay model. We assume that the wires have
zero propagation delay.

For the examples in this paper, we assign a delay
bound of 1 time unit to each gate. (This is not the
so-called unit-delay model, in which gate delays are
assumed to be exactly 1; rather, it is the up-bounded
inertial delay model with an upper bound of 1 for each
gate.) More sophisticated models of temporal behav-
ior could readily be incorporated into our algorithms;
we neglect such details here in order to focus on the
core issues.

II. Analysis

Conceptually, the analysis is just an algorithmic
implementation of the idea illustrated in Example 1.
We apply definite values to the primary inputs, and



track the propagation of signal values. Once we have
established that a definite value has appeared on a
gate output, this value persists for the duration of
the analysis. The arrival time of a well-defined value
at a gate output is determined either:

• by the arrival time of the earliest controlling input
value;
• or by the arrival time of the latest non-controlling

input value.

The analysis proceeds in time intervals. If the gates
have fixed delay bounds, we can choose the interval
length to match the shortest delay bound. In each
time interval, we evaluate all the gates that received
new input values in the previous interval. In this
manner, we are assured that we know the earliest
time that signal values becomes known. If definite
boolean values never arrive at one or more of the pri-
mary outputs, then we conclude that the circuit is
not combinational.

For most of the circuits encountered in practice,
explicit analysis is not a viable option. With n in-
puts, there would be 2n input assignments to con-
sider. Instead, we tackle the problem with symbolic
techniques, in which we manipulate sets of input as-
signments.2 In our current implementation, we use bi-
nary decision diagrams [2], [9]. However, we note that
the use of boolean satisfiability (SAT)-based tech-
niques [8] would probably be more computationally
efficient.

Algorithm 1: Symbolic Timing Analysis

Let X = (x1, . . . , xn) be the primary inputs. We
maintain a pair of characteristic sets for the output
of each gate gi. The first

C
(0)
i (X),

consists of the set of input assignments for which the
gate evaluates to 0; the second,

C
(1)
i (X),

the set for which it evaluates to 1. Implicitly, the
complement of the union of these two sets is the set
of assignments for which the gate evaluates to ⊥.

2In a symbolic formulation, a set of input assignments is char-
acterized by a boolean function: the function evaluates to 1 for
those assignments in the set, and to 0 for those not in the set.
Thus, OR corresponds to the union, AND to the intersection,
and NOT to the complement of sets.

At the outset, all wires are assumed to have unde-
fined values, so the characteristic sets are empty,

C
(0)
i := C

(1)
i := 0.

As the analysis proceeds, input assignments that
induce gates to produce definite output values are
added to these sets. Call the addition of input as-

signments to the set C
(v)
i , for some v ∈ {0, 1}, an

arrival event valued v at gate gi.

Initialization

The initial arrival events occur at gates controlled
by primary inputs. For instance, suppose that an
AND gate gi is connected to the primary input x.
We have an initial arrival event

C
(0)
i := x̄.

Similarly, suppose that an OR gate gj is connected to
the primary input y. We have an initial arrival event

C
(1)
j := y.

We compute such arrival events for all gates attached
to the primary inputs.

Propagation

In each interval, we compute new arrival events for
gates based on the antecedent arrival events on their
inputs.

1. Suppose that in the previous interval there was an
arrival event valued v at gate gi; that gi is a fan-in to
gate gj ; and that v is a controlling input value for gj ,
producing an output value w. We compute

C
(w)
j := C

(w)
j + C

(v)
i .

If C
(w)
j changes as a result (i.e., C

(v)
i was not con-

tained in C
(w)
j ), then we have a new arrival event

valued w at gj .

2. Suppose that in the previous interval there was an
arrival event valued v at gate gi; that gi is a fan-in to
gate gj ; and that v is a non-controlling input value for
gj . Let gi1 , . . . , gik be all the gates that fan-in to gj ,
and let vi1 , . . . , vik be the non-controlling values for
these fan-in gates. Suppose that these non-controlling
inputs produce an output value w for gj . We compute

C
(w)
j := C

(w)
j +

[

C
(vi1

)

i1
· · ·C

(vik
)

ik

]

.



Again, if C
(w)
j changes as a result, then we have a new

arrival event valued w at gj .

To illustrate these propagation conditions, suppose
that we have an AND gate g3 with fan-in gates g1 and
g2, as shown in Figure 4.

},{ )1(
1

)0(
1 CC

},{ )1(
3

)0(
3 CC

},{ )1(
2

)0(
2 CC

���

��

� �

��

PSfrag replacements

f1
f2
f3
f4

Fig. 4. An illustration of the propagation conditions.

Suppose that the characteristic sets are

C
(0)
1 = x1, C

(1)
1 = x2,

C
(0)
2 = x3, C

(1)
2 = x4,

C
(0)
3 = x1 + x3, C

(1)
3 = x2 x4.

Now suppose that there is an arrival event valued 0
at g1 setting

C
(0)
1 = x1 + x5.

In the next interval, we compute

C
(0)
3 := C

(0)
3 + C

(0)
1 = x1 + x3 + x5.

Now suppose that there is an arrival event valued 1
at g1 setting

C
(1)
1 = x2 + x6.

In the next interval, we compute

C
(1)
3 := C

(1)
3 +

[

C
(1)
1 C

(1)
2

]

= (x2 + x6)x4.

Termination

Termination is guaranteed since the cardinality of
the characteristic sets either increases or remains un-
changed with arrival events. A characteristic set can-
not grow beyond the size of the full set of input as-
signments.

When the algorithm terminates, the union of the
characteristic sets

C
(0)
i + C

(1)
i

for each gate gi specifies the input assignments for
which gi produces definite values. If the complement
of this union includes input assignments not in the
“don’t care” set for any gate producing a primary
output, then we conclude that the circuit is not com-
binational. In particular, if there are no “don’t care”
input assignments, then the circuit is combinational if
and only if the union consists of all input assignments
for every gate producing a primary output.

Also, when the algorithm terminates, the time that
has lapsed – the number of intervals times the interval
length – gives a bound on the circuit delay.

Analysis of Example 1

We step through a symbolic analysis of the circuit in
Figure 1 of the Introduction. We assume that each
gate has a delay bound of 1 time unit, and that the
primary inputs arrive at time 0.

Time 1

For the AND gates, controlling values of 0 on the pri-
mary inputs result in

C
(0)
1 = x̄, C

(0)
3 = b̄, C

(0)
5 = c̄.

For the OR gates, controlling values of 1 on the pri-
mary inputs result in

C
(1)
2 = a, C

(1)
4 = x, C

(1)
6 = d.

Time 2

For the AND gates, non-controlling values of 1 from
the preceding OR gates result in

C
(1)
1 = x d, C

(1)
3 = b a, C

(1)
5 = c x.

For the OR gates, non-controlling values of 0 from the
preceding AND gates result in

C
(0)
2 = ā x̄, C

(0)
4 = x̄ b̄, C

(0)
6 = d̄ c̄.

Time 3

For the AND gates, controlling values of 0 from the
preceding OR gates result in

C
(0)
1 = x̄ + d̄ c̄, C

(0)
3 = b̄ + ā x̄, C

(0)
5 = c̄ + x̄ b̄.



For the OR gates, controlling values of 1 from the
preceding AND gates result in

C
(1)
2 = a + x d, C

(1)
4 = x + b a, C

(1)
6 = d + c x.

Controlling and non-controlling values continue to
propagate forward, in alternate fashion.

Time 6

Skipping forward, after six intervals we have:

C
(0)
1 = x̄ + d̄ c̄, C

(1)
1 = x(d + c),

C
(0)
2 = ā(x̄ + d̄ c̄), C

(1)
2 = a + x(d + c),

C
(0)
3 = b̄ + ā(x̄ + d̄ c̄), C

(1)
3 = b(a + x(d + c)),

C
(0)
4 = x̄(b̄ + ā), C

(1)
4 = x + b a,

C
(0)
5 = c̄ + x̄(b̄ + ā), C

(1)
5 = c(x + ba),

C
(0)
6 = d̄(c̄ + x̄(b̄ + ā)), C

(1)
6 = d + c(x + b a).

At this point, there are no new arrival events. Note
that for each i = 1, . . . , 6

C
(0)
i + C

(1)
i = 1.

Hence, all input assignments produce definite values
at the outputs, and so we conclude that the circuit is
combinational. Since we propagated events for 6 time
units, we conclude that the circuit has delay 6. 2

Example 2

Consider the circuit shown in Figure 5. It computes
four output functions, f1, f2, f3, and f4 of three input
variables a, b, and c. The corresponding equations
are:

f1 = bc + b̄ f̄2

f2 = ac + bf̄3

f3 = af̄1 + bf1 + c̄f̄4

f4 = ab̄ + f̄1 + bf̄2

PSfrag replacements

f1

f2

f3

f4

Note that there are cyclic dependencies: f1 depends
on f2; f2 depends on f3; f3 depends on f1 and f4; and
f4 depends on f1 and f2. Nevertheless, this circuit is
combinational with delay 8.

We do not trace through the analysis this time. The
table in Figure 6 summarizes the results. It gives the

characteristic sets C
(0)
i and C

(1)
i for the output gates.

2

g3

[bc̄, bc ]2
[ab̄c + bc̄, c(b + ā) + b̄c̄ ]4

g6

[b̄(c̄ + ā), ac ]2
[ā(c + b̄) + ac̄, ac ]6
[ā(c + b̄) + ac̄, ābc̄ + ac ]7

g10

[āb̄c, 0 ]2
[āb̄c, b(c + a) ]4
[ā(bc̄ + b̄c), b(c + a) ]5
[āb̄c + c̄(ab̄ + āb), c(b + a) + ab ]6
[āb̄c + c̄(ab̄ + āb), āb̄c̄ + c(b + a) + ab ]7

g13

[0, ab̄ ]2
[0, bc̄ + ab̄ ]3
[abc, bc̄ + ab̄ ]4
[abc + āb̄, bc̄ + ab̄ ]5
[abc + āb̄, b(c̄ + ā) + ab̄ ]8

Fig. 6. Characteristic sets [C
(0)
i , C

(1)
i ]j for the circuit of

Figure 5, for gates gi, i = 3, 6, 10, 13, at time intervals
j = 2, . . . , 8.

Timing analysis with such an idealized model is
transparent. However, the devil is in the details
– and with realistic timing models there are many

detailed aspects to consider. Nevertheless, we con-
clude that, at least in a conceptual sense, the anal-
ysis of cyclic circuits is no more complicated than
that of acyclic circuits. We can perform this task ef-
ficiently through symbolic event propagation, within
the ternary framework.

III. Results

In previous work, we discussed design strategies
for cyclic circuits and described our synthesis pro-
gram, called CYCLIFY [14], built within the Berke-
ley SIS environment [17]. In our methodology, cy-
cles are introduced in the restructuring and minimiza-
tion phases, at the level of functional dependencies.
Synthesis is performed through a branch-and-bound
search, with analysis used to validated and rank po-
tential solutions. In our current work, we have ex-



2f

� �

1f

�

� �

�

3f

� �

�

4f

�

�

�

1g

2g

3g

4g

5g

6g

7g 8g

9g

10g

11g

12g

13g

PSfrag replacements

f1
f2
f3
f4

Fig. 5. A cyclic combinational circuit.

tended the methodology to the decomposition and
mapping phases.

The case for using cycles to optimize area seems to
be the most compelling. However, we have also in-
vestigated cyclic optimizations jointly targeting area
and delay. In the branch-and-bound search, we use
a sliding scale for the relative weight of area vs. de-
lay when ranking solutions. The timing information
is provided by the algorithm described in Section II.
While this is a topic of ongoing research, we present
some results.

For benchmark circuits, we used the usual suspects,
namely the Espresso and LGSynth93 collections. Ex-
amples were selected based on size and suitability
(generally, circuits with fewer than 30 inputs and
fewer than 30 outputs). For circuits with latches, we
extracted the combinational part.

Beginning from a collapsed specification, we ap-
plied the sequence of optimizations called “script-
.delay” and then mapped to a library of two-input
NAND/NOR gates and inverters. In the library

• NAND2/NOR2 gates have area 2, and inverters have
area 1;
• NAND2/NOR2 gates have delay bounds 1, and in-
verters have delay bounds 0.5.

We compare the results obtained using the stan-
dard routines in SIS to those obtained with the corre-

sponding routines from CYCLIFY. We chose a weight-
ing of one-third for area and two-thirds for delay in
the cyclic optimizations. Accordingly, the relative im-
provements in delay are more significant than those
in area.

Figure 7 lists some of the benchmark circuits for
which cyclic solutions were found. The area and de-
lay of the SIS solutions are given in columns 2 and
3, respectively. The area and delay of the CYCLIFY

solutions are given in columns 4 and 6, respectively.
The improvements in area and delay, as percentages
of the SIS solutions, are given in Columns 5 and 7,
respectively.

We note that the improvements in delay were often
greater than 10%. In some cases, there were simul-
taneous improvements in the vicinity of 10% for area
and 25% for delay.

IV. Discussion

Early work in the 1960’s and 70’s established the
premise of combinational circuits with cycles, and
suggested the possible benefits. And yet, combina-
tional circuits are not designed with cycles in prac-
tice. Perhaps designers have eschewed feedback due
to the apparent complexity of reasoning about cyclic
structures. Malik’s work on the topic provided a solid
foundation for analysis; however, he approached the



Espresso Benchmarks
SIS CYCLIFY

Area Delay Area Delay
p82 175 19.0 167 4.6 % 15.0 21.1 %
t1 343 17.0 327 4.6 % 14.0 17.6 %
b4 474 30.0 464 2.1 % 29.0 3.4 %

exp 502 31.0 480 4.4 % 29.0 6.4 %
in3 599 40.0 593 1.0 % 33.0 17.5 %
in2 590 34.0 558 5.4 % 29.0 14.7 %
b10 681 37.0 691 -1.5 % 35.0 5.4 %
in0 751 42.0 777 -3.5 % 37.0 11.9 %

LGSynth93 Benchmarks
SIS CYCLIFY

Area Delay Area Delay
5xp1 210 23.0 180 14.3 % 22.0 4.3 %

planet 964 40.0 938 2.7 % 38.0 5.0 %
s386 222 21.0 217 2.2 % 20.0 4.7 %
bw 280 28.0 254 9.3 % 20.5 26.8 %
cse 337 29.5 333 1.2 % 27.5 6.7 %

s510 452 28.0 444 1.8 % 24.0 14.3 %
ex1 526 40.0 522 0.7 % 34.0 15.0 %
s1 566 36.0 542 4.2 % 31.0 13.9 %

duke2 742 38.0 716 3.5 % 34.0 10.5 %
styr 821 39.0 827 -0.7 % 36.0 7.7 %

s1488 1016 43.0 995 2.1 % 34.0 20.9 %
s1494 1090 46.0 1079 1.0 % 39.0 15.2 %

Fig. 7. Area and Delay of Berkeley SIS vs. CYCLIFY for
Benchmarks with “script.delay” optimizations, and map-
ping to NAND2/NOR2 gates and inverters.

problem of timing analysis from a topological per-
spective. Path-based reasoning about cyclic topolo-
gies seems tortuous and inefficient.

Exact timing analysis is, of course, a difficult prob-
lem, whether circuits are cyclic or not. However, us-
ing a functional approach based on event propagation,
existing techniques can be applied effectively. In prin-
ciple, timing analysis is no more difficult for cyclic
circuits than for acyclic circuits. In practice, many
further aspects need to be addressed. For instance,
existing techniques for incremental timing analysis as-
sume a topological ordering.

In future work, we will incorporate more realistic
timing models into our analysis algorithm, and im-
plement more sophisticated search heuristics in our
synthesis procedure.

References

[1] R. I. Bahar et al., “Timing Analysis of Combinational
Circuits Using ADD’s,” European Design Automation
Conf., pp. 625–629, 1994.

[2] R. E. Bryant, “Graph-Based Algorithms For Boolean
Function Manipulation,” IEEE Trans. Computers, Vol.
C-35, No. 6, pp. 677–691, 1986.

[3] R. E. Bryant, “Boolean Analysis of MOS Circuits,”
IEEE Trans. Computer-Aided Design, pp. 634–649,
1987.

[4] J. A. Brzozowski and C.-J. H. Seger, “Asynchronous
Circuits,” Springer-Verlag, 1995.

[5] S. A. Edwards, “Making Cyclic Circuits Acyclic,” De-
sign Automation Conf., pp. 159–162, 2003.

[6] D. A. Huffman, “Combinational Circuits with Feed-
back,” Recent Developments in Switching Theory, A.
Mukhopadhyay, ed., pp. 27–55, 1971.

[7] W. H. Kautz, “The Necessity of Closed Circuit Loops
in Minimal Combinational Circuits,” IEEE Trans.
Comp., Vol. C-19, pp. 162–166, 1970.

[8] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability,” IEEE Trans. Computer-Aided Design,
Vol. 11, No. 1, pp. 4–15, 1992.

[9] C. Y. Lee, “Representation of Switching Circuits by
Binary-Decision Programs,” Bell System Technical
Journal, Vol. 38, pp. 985–999, 1959

[10] S. Malik, “Analysis of Cyclic Combinational Cir-
cuits,” IEEE Trans. Computer-Aided Design, Vol. 13,
No. 7, pp. 950–956, 1994.

[11] C. R. McCaw, “Loops in Directed Combinational
Switching Networks,” Engineer’s Thesis, Stanford Uni-
versity, 1963.

[12] M. Mendler and M. Fairlough, “Ternary Simulation:
A Refinement of Binary Functions or an Abstraction of
Real-Time Behavior, ”, Workshop on Designing Cor-
rect Circuits, 1996.

[13] M. Riedel and J. Bruck, “Cyclic Combinational Cir-
cuits: Analysis for Synthesis,” Int’l Workshop Logic
and Synthesis, pp. 105–112, 2003.

[14] M. Riedel and J. Bruck, “The Synthesis of Cyclic
Combinational Circuits,” Design Automation Conf.,
pp. 163–168, 2003.

[15] M. Riedel, “Cyclic Combinational Circuits,” Ph.D.
Dissertation, Caltech, 2004.

[16] R. L. Rivest, “The Necessity of Feedback in Mini-
mal Monotone Combinational Circuits,” IEEE Trans.
Comp., Vol. C-26, No. 6, pp. 606–607, 1977.

[17] E. Sentovich et al., “SIS: A System For Sequential Cir-
cuit Synthesis,” Electronics Research Lab, U. C. Berke-
ley, Tech. Rep., UCB/ERL M92/41, 1992.

[18] T. R. Shiple, “Formal Analysis of Synchronous Cir-
cuits,” Ph.D. Dissertation, U.C. Berkeley, 1996.

[19] R. A. Short, “A Theory of Relations Between Sequen-
tial and Combinational Realizations of Switching Func-
tions,” Ph.D. Dissertation, Stanford University, 1961.

[20] L. Stok, “False Loops Through Resource Sharing,”
Int’l Conf. Computer-Aided Design, pp. 345–348, 1992.

[21] H. Yalcin and J. Hayes, “Event Propagation Condi-
tions in Circuit Delay Computation,” ACM Trans. De-
sign Automation of Electronic Systems, Vol. 2, No. 3,
pp. 249—280, 1997

[22] M. Yoeli and S. Rinon, “Application of Ternary Al-
gebra to the Study of Static Hazards,” Journal of the
ACM, Vol. 11, No. 1, pp. 84–97, 1964.


