
Polysynchronous Stochastic Circuits

M. Hassan Najafi, David J. Lilja, Marc Riedel, and Kia Bazargan
Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, USA

{najaf011, lilja, mriedel, kia}@umn.edu

Abstract— Clock distribution networks (CDNs) are

costly in high-performance ASICs. This paper pro-

poses a new approach: splitting clock domains at a

very fine level, down to the level of a handful of gates.

Each domain is synchronized with an inexpensive clock

signal, generated locally. This is possible by adopting

the paradigm of stochastic computation, where signal

values are encoded as random bit streams. The design

method is illustrated with the synthesis of circuits for

applications in signal and image processing.

I. Introduction

All electronic systems are inherently asynchronous in
nature. By carefully choreographing transitions with clock
signals, asynchronous circuitry can be adapted to appear
to behave synchronously. Such synchronism brings signif-
icant advantages: it greatly simplifies the design effort;
also, with predictable timing, one can make performance
guarantees. However, synchronism comes at a significant
cost: one must create a clock distribution network (CDN)
that supplies a common reference signal to all synchronous
components. Historically, the primary design goal for
CDNs has been to ensure that a single clock signal arrives
at every synchronous component at precisely the same
time (so there is zero clock skew). Achieving this is diffi-
cult and costly in terms of design effort and resources. In
modern large-scale integrated circuits, the CDN accounts
for significant area, consumes significant power, and often
limits the overall circuit performance [1][2]. With increas-
ing variation in circuit parameters, designing CDNs with
tolerable clock skew is becoming a major design bottle-
neck.

Completely asynchronous design methodologies have
been studied for decades, but these have never gained
widespread acceptance (in spite of strong advocacy by
proponents). Circuits with multiple independent clock
domains – so circuits that are globally asynchronous, but
locally synchronous (GALS) – have become common [3].
Splitting the domains reduces the cost of the distribution
network, but relatively complex circuitry for handshak-
ing is needed at domain crossings, so the splitting is only
performed at a coarse level.

This paper proposes a radically new approach: splitting
clock domains at a very fine level, with domains consisting
of only a handful of gates each. Each domain is synchro-

nized by an inexpensive clock signal, generated locally.
This is feasible if one adopts a stochastic representation
for signal values [4, 5, 6, 7, 8, 9]. Logical computation is
performed on randomized bit streams, with signal values
encoded in the statistics of the streams: a real value x in
the interval [0, 1] is represented by a stream with bits each
having independent probability x of being 1.

Compared to a binary radix representation, such a
stochastic representation is not very compact. With M
bits, a binary radix representation can represent 2M dis-
tinct numbers. To represent real numbers with a resolu-
tion of 2−M , i.e., numbers of the form a

2M
for integers a

between 0 and 2M , a stochastic representation requires a
stream of 2M bits. The two representations are at oppo-
site ends of the spectrum: conventional binary radix is a
maximally compressed, positional encoding; a stochastic
representation is an uncompressed, uniform encoding.

A stochastic representation, although not very compact,
has an advantage over binary radix in terms of error tol-
erance. Suppose that the environment is noisy: bit flips
occur and these afflict all the bits with equal probability.
With a binary radix representation, in the worst case, the
most significant bit gets flipped, resulting in a large error.
In contrast, with a stochastic representation, all the bits
in the stream have equal weight. A single flip results in
a small error. This error tolerance scales to high error
rates: multiple bit flips produce small and uniform de-
viations from the nominal value. More compelling than
the error tolerance is the simplicity of the designs in the
stochastic paradigm. Complex functions can be imple-
mented with remarkably simple logic. A reduction in area
of 50x or 100x compared to conventional implementations
is common [8][10].

A more compelling advantage still of the stochastic
paradigm could be the idea advocated in this paper. With
a stochastic representation, computational units can tol-
erate skew in the arrival time of their inputs. This stems
from the fact that the stochastic representation is uni-
form: all that matters in terms of the value that is com-
puted is the fraction of time that the signal is high. We
will demonstrate that the correct value is computed even
when the inputs are misaligned temporally. Accordingly,
adopting the stochastic paradigm obviates the need for a
global clock signal and the associated CDN. Instead one
can simply use local clock signal generators throughout.
We call this approach polysynchronous stochastic (to dis-

Fig. 1. Example of stochastic multiplication using an AND gate.

Fig. 2. Stochastic multiplication using an AND with
unsynchronized bit streams.

tinguish it from asynchronous and GALS methodologies).

The paper is structured as follows. In Section II, we
provide some background on stochastic computing. In
Section III, we introduce polysynchronous stochastic con-
cepts and demonstrate how to implement basic operations.
In Section IV, we describe our experimental methodology
and present experimental results. Finally, in Section V,
we present conclusions and discuss future work.

II. BACKGROUND

In the paradigm of stochastic computing (SC), circuits
operate on random bit streams where the signal value is
encoded by the probability of obtaining a one versus a
zero. In the unipolar stochastic representation, each real-
valued number x (0 ≤ x ≤ 1) is represented by a sequence
of random bits, each of which has probability x of being
one and probability 1 − x of being zero. In the bipolar
representation, each real-valued number y (−1 ≤ y ≤ 1)
is represented by a sequence of random bits, each of which
has probability y+1

2 of being one and probability 1− y+1
2

of being zero.

This representation is much less compact than a binary
radix. However, complex operations can be performed
with very simple logic. In particular, arithmetic functions,
consisting of operations like addition and multiplication
can be implemented very efficiently. Complex functions,
such as exponentials and trigonometric functions, can be
computed through polynomial approximations [5, 8]. Be-
cause the bit stream representation is uniform, with all
bits weighted equally, circuits designed this way are highly
tolerant of soft errors (i.e., bit flips) [6].

Critical to the ideas in this paper is the observation
that the stochastic representation is a uniform fractional
representation: all that matters is the fraction of time that
the signal is high. Consequently, precise synchronization
between the arrival time of input values to logic gates does
not matter. This is illustrated in the next section.

Fig. 3. Example of stochastic scaled addition using a MUX unit.

Fig. 4. Stochastic scaled addition using a MUX with
unsynchronized bit streams.

A. Stochastic Operations

Multiplication Multiplication can be implemented us-
ing a standard AND gate [6]. Fig. 1 shows the multiplica-
tion of two 10-bit stochastic streams using an AND gate.

The value represented by a bit stream is the time that
the signal is high divided by the total length of the stream.
Fig. 2 illustrates an example of multiplying two unsyn-
chronized bit streams representing 0.6 and 0.5. As shown,
the value represented by the bit stream at the output of
the AND gate is 0.3, the value one expects when multi-
plying 0.6 by 0.5.

Scaled Addition and Subtraction Stochastic values
are restricted to the interval [0, 1] (in the unipolar case)
or the interval [-1, 1] (in the bipolar case). So one cannot
perform addition or subtraction directly, since the result
might lie outside these intervals. However, one can per-
form scaled addition and subtraction. These operations
can be performed with a multiplexer (MUX). Fig. 3 illus-
trates the operation 1

2A+ 1
2B.

Fig. 4 illustrates another example of scaled addition,
this time on two unsynchronized bit streams representing
0.25 and 0.5. As expected, the output is a bit stream
representing 0.375, the result of the scaled addition.

B. Stochastic Circuits

Stochastic computing has been applied to a wide va-
riety of applications, ranging from image processing [8,
11, 12, 13, 14, 15] to decoding of low-density parity check
codes [16, 17, 18]. In this paper, we use the stochastic im-
plementations of three digital image processing algorithms
as case studies to evaluate the polysynchronous stochastic
paradigm.

Robert’s cross edge detection A stochastic imple-
mentation of Robert’s cross edge detection algorithm, pro-

(a) (b)

Fig. 5. a) Stochastic implementation of the Robert’s cross edge
detection algorithm. For details of the implementation, the readers
are referred to [8] b) Stochastic implementation of the gamma
correction function using a MUX-based Bernstein polynomial
architecture [6].

posed in [8], is shown in Fig. 5.a. Each operator consists
of a pair of 2×2 convolution kernels that process an image
pixel based on its three neighbors as follows:

Si, j =
1

2
× (

1

2
|ri,j − ri+1,j+1|+

1

2
|ri,j+1 − ri+1,j |)

where ri,j is the value of the pixel at location (i, j) of the
original input image and Si,j is the output value computed
for the same location in the output image. Since this
circuit works with signed values, all streams should be in
the bipolar format.

Gamma correction Gamma correction is a nonlinear
function used to code and decode luminance and tri-
stimulus values in video and image processing systems.
The required function in the gamma correction processes
is f(x) = xγ , where x is the value of a pixel in a given
gray-scale image and γ is the gamma factor. For example,
γ = 0.45 is the gamma value used in most TV cameras.
A stochastic architecture for computing functions such as
gamma correction was proposed in [6].

An example of stochastic gamma correction is shown
Fig. 5.b. The inputs to this system consist of six indepen-
dent bit streams, each with probability corresponding to
the value x of the input pixel, as well as seven random bit
streams set to constant values, corresponding to the Bern-
stein coefficients, b0 = 0.0955, b1 = 0.7207, b2 = 0.3476,
b3 = 0.9988, b4 = 0.7017, b5 = 0.9695 and b6 = 0.9939.
For further details, readers are referred to [6].

Noise Reduction using a Median Filter An efficient
technique for noise reduction in gray-scale images is to use
a median filter. It replaces each pixel with the median
value of its neighboring pixels. So the operation considers
a local window around each pixel, computes the median
value of the pixels inside that window, and replaces the
pixel with the computed value. A stochastic implementa-
tion of a 3× 3 median filter was proposed in [8].

C. Stochastic Number Generators (SNG)

A premise for stochastic computing is the availability
of stochastic bit streams with the requisite probabilities.
Such streams can either be generated from physical ran-
dom sources [19, 20] or with pseudo-random constructs
such as linear feedback shift registers (LFSRs). Given an
input value, say in binary radix, the procedure for generat-
ing a stochastic bit stream with probability x is as follows.
Obtain an unbiased random value r from the random or
pseudorandom source; compare it to the target value x;
output a one if r ≤ x and a zero otherwise.

III. POLYSYNCHRONOUS STOCHASTIC
CIRCUITS

As was discussed in the introduction, stochastic com-
putation has the advantage that it can tolerate input val-
ues that are misaligned temporally. Consequently, we can
eliminate a global clock and instead use local clocks. Al-
ternatively, we can continue to use a global clock, but relax
the arrival time requirements to different components. We
call this approach “polysynchronous clocking.” First we
will discuss the functionality of basic stochastic compu-
tational elements, such as the multiplier (an AND gate)
and the scaled adder (a MUX unit) when these receive
inputs driven by different clock sources. Next we discuss
the polysynchronous scheme more generally. Finally, we
present and evaluate three examples of image processing
circuits, driven by polysynchronous clocks.

A. Basic Stochastic Operations with Polysynchronous In-
puts

Consider an AND gate, responsible for multiplying two
unipolar input bit streams, P1 and P2, generated by
stochastic number generators driven by two clocks with
different periods, T1 and T2. To simplify the problem, we
first show how an AND gate works when two unsynchro-
nized clocks are connected directly to its inputs. Then
we discuss the behavior with arbitrary stochastic input
streams. Connecting two clocks with 50% duty cycles di-
rectly to the inputs of an AND gate is equivalent to con-
necting two stochastic streams both representing P=0.5.
Therefore, the expected output value is Y=0.25.

We want to verify the functionality of performing mul-
tiplication using an AND gate according to three different
scenarios: 1) T1=2ns, T2=3.5ns, 2) T1=2ns, T2=3.2ns,
and 3) T1=1.8ns, T2=3.2ns. Fig. 6 illustrates the in-
put signals as well as the output signal in the case where
T1=1.8ns and T2=3.2ns for 20ns of operation. Contin-
uing the operation for about 1000ns will produce a good
view of the different lengths of high pulses that are ob-
served at the output of the AND gate. Dividing the total
fraction of the time that the output signal is high by the
total time gives the result of the multiplication operation.
Table I presents results for the three selected cases of clock

TABLE I
Different observed lengths of high pulses at the output of
the AND gate and the number of occurrences of each one

for three pairs of clock periods when executing the
multiplication operation for 1000ns.

T1=2ns
T2=3.5ns

T1=2ns
T2=3.2ns

T1=1.8ns
T2=3.2ns

Length # Length # Length #
0.25 72 0.2 63 0.1 35
0.50 72 0.4 63 0.2 35
0.75 71 0.6 62 0.3 35
1.00 142 0.8 62 0.4 35

- - 1.0 125 0.5 35
- - - - 0.6 35
- - - - 0.7 35
- - - - 0.8 34
- - - - 0.9 138

Total High 249.25 249.60 249.40

TABLE II
The measured output of the MUX when three

polysynchronous clocks with distinct periods are
connected to its inputs for 1000ns.

T1 T2 T3
Total

High Time
Measured
Output

Expected
Output

2.00 1.80 3.75 499.43 0.499 0.500
1.90 2.63 2.12 500.21 0.500 0.500
3.20 1.60 2.00 498.80 0.499 0.500
2.87 2.43 2.10 499.23 0.499 0.500

periods. It lists the number of occurrences of high pulses
of each length that is observed, as well as the total time
of the high pulses.

As can be seen in Table I, when we vary the periods of
the two clock sources, the total time that the output is
high does not change much. The length of the observed
high pulses and the number of occurrences of each changes,
but the total fraction of the time that the output is high
is very close to 250ns. Dividing 250ns by 1000ns produces
0.25, the expected output of multiplying the two input
streams. This example provides an intuitive explanation
of why polysynchronous stochastic operations work: tem-
poral misalignment of input values does not affect the ac-
curacy of the computation.

Next we analyze the functionality of a MUX unit per-
forming scaled addition with temporally misaligned in-
puts. The main difference between this unit and the
AND gate performing multiplication is that the MUX
unit has an extra select stream performing the scaling.
To study the functionality of the MUX unit, we connect
three polysynchronous clocks with distinct periods, T1,
T2, and T3, to the inputs. We compare the fraction of
time that the output is high divided by the total time to
the expected value, (1/2+1/2)/2. The results are shown
in Table II. These results are similar to what we saw for
the multiplication operation. The measured output values
are essentially equal to the expected output value of 0.5.

Now we discuss the general case of operations on

stochastic streams generated by SNGs that are driven by
separate clocks, and so are not synchronized. Table III
presents the results of trials for stochastic multiplication
and scaled addition. In this table, T1 and T2 are the
periods of the clocks of the SNGs responsible for generat-
ing the first and the second streams, respectively. For the
scaled addition operations, T3 is the period of the clock
of the SNG responsible for generating the select stream,
which is set to 0.5. Note that the results presented in Ta-
ble III are based on bit streams of length 1024, generated
with 32-bit LFSRs. This configuration produces a good
Bernoulli distribution of probabilities for the individual
bits in the stream. As can be seen in this table, all of
the measured values are very close to the expected values.
Indeed, in spite of the polysynchronous clocking, the re-
sults are accurate to within the error bound expected for
stochastic computation [6].

TABLE III
Stochastic multiplication and scaled addition, using an

AND gate and a MUX, respectively, with inputs generated
by unsynchronized SNGs.

AND Output MUX Output
In1 T1(ns) In2 T2(ns) T3(ns) Meas. Expec. Meas. Expec.
0.50 2.10 0.50 2.30 2.00 0.247 0.250 0.502 0.500
0.35 2.82 0.66 3.11 3.68 0.237 0.231 0.498 0.505
0.27 2.81 0.48 2.36 3.61 0.128 0.129 0.372 0.375
0.18 1.60 0.53 3.70 2.20 0.096 0.095 0.350 0.355

B. Stochastic Circuits with Polysynchronous Inputs

We extend our analysis of polysynchronous clocking to
more complex stochastic circuits, namely the stochastic
image processing circuits discussed in Section II. Suppose
that we are given an input 4x4 gray-scale image to process
by a stochastic Robert’s cross edge detection circuit. An
efficient way of processing the image is to use 16 instances
of the Robert’s cross stochastic circuit to process each of
the pixels concurrently. Fig. 7 shows a diagram of such a
parallel circuit. Call each instance a Robert’s cross cell.
Each cell has its own local clock; it converts its input pixel
value, presented as a stochastic bit stream, into an output
pixel value, presented as stochastic bit stream. The input
bit stream is generated by an SNG driven by the cell’s
local clock. The cell communicates with its neighbor cells
to receive their pixel values, presented as stochastic bit
streams. These bit streams arriving from neighboring cells
are generated by SNGs driven by their local clocks, so the
input bit streams will not all be synchronized. The clocks
will potentially all have different frequencies and phases.

Consider the first cell in Fig. 7. This cell is responsible
for processing the image pixel 1 to decide whether it is on
an edge or not. This cell takes a pixel intensity value and
converts it to a stochastic bit stream using an SNG driven
by a local clock. It does so while receiving streams corre-
sponding to the values of neighboring pixels 2, 5, and 6.
The pulses that the first cell receives from cells 2, 5, and 6
are all generated by SNGs driven by local clocks. Accord-
ingly, the input bit streams are all potentially misaligned

Fig. 6. Input clock signals and the corresponding output from connecting polysynchronous inputs to an AND gate.

Fig. 7. 16 Robert’s Cross Cells processing a 4x4 input image
concurrently.

temporally. Nevertheless, as the results in the next section
show, the computation is accurate.

IV. EXPERIMENTAL RESULTS

A. Methodology

We implemented the three stochastic image process-
ing circuits discussed in Section II, namely the circuit
for Robert’s cross edge detection, Gamma correction, and
noise reduction, in Verilog. For the Robert’s cross circuit,
three out of four streams are received asynchronously with
respect to the local clock of each cell. Similarly, for the
noise reduction circuit, eight out of nine streams are re-
ceived asynchronously with respect to the local clock of
each cell. For the Gamma correction circuit, we generate
the bit streams for the Bernstein coefficients streams with
SNGs driven by local clocks. We also generate the bit
streams for the independent copies of the input value x
using SNGs driven by local clocks.

We selected a 256×256 sample input image, so an image
with 65536 pixels, for our simulations. The simulations
were performed using the ModelSim hardware simulator.
We implemented the SNG unit described in [6] for convert-
ing input pixel values into stochastic bit streams, using a
32-bit maximal period LFSR. This pseudorandom num-
ber generator was seeded with a random initial value for
each trial; 10 trials were performed to ensure statistically
significant results. Bit streams of length 1024 were used

(a) (b) (c) (d)

Fig. 8. a) The original 256 × 256 sample image, and the outputs of
processing the input image using: b) Stochastic Robert’s cross edge
detection, c) Stochastic Gamma Correction, d) Stochastic Noise
Reduction Median Filtering, with synchronized local clocks.

to represent the values. To convert the output bit streams
into deterministic real values, we measured the fraction of
the time the output signal is high and divide by the to-
tal time of the computation. For example, if the output
signal was high 25% of the time, it is evaluated as 0.25.

To evaluate the correct functionality of our polysyn-
chronous circuits, we first generated a “golden case” – we
processed the sample image using stochastic circuits with
all local clocks synchronized. Fig. 8 shows the sample im-
age and the resulting output images. The synchronized
clocks had a period of 2ns.

For the experiments we compare six different clocking
schemes when evaluating the three stochastic image pro-
cessing circuits:

Scheme 1. The period of the local clock in all processing
cells is fixed at 2ns (the ‘golden case” above).

Scheme 2. The period of the local clock in each cell
is a random real value between 2-3 ns (so 50% variation
between the clock periods).

Scheme 3. The period of the local clock in each cell is
a random real value between 2-4ns (so 100% variation).

Scheme 4. The periods of the local clocks are random
values between 2-4ns, but high output pulses that are less
than 10% of the 2ns clock period (0.2ns) are filtered out
(i.e., they are set to 0).

Scheme 5. Same as Scheme 4, but we filter out high
output pulses that are less than 15% of the 2ns clock pe-
riod.

Scheme 6. Same as Scheme 4, but we filter out high
output pulses that are less than 20% of the 2ns clock pe-
riod.

The motivation for schemes 2 and 3 is to study the
impact of having more variation between the local clocks.
For schemes 4, 5 and 6, it is to approximate hardware con-
ditions in which short pulses – call them “runt pulses” – do
not reach a valid high or low level, and so cannot change
the output states of the gates.

TABLE IV
The mean of the output error rates for the three

implemented stochastic circuits, simulated in six different
clocking schemes.

Clocking Schemes
Circuit S.1 S.2 S.3 S.4 S.5 S.6
Robert. 2.88% 2.89% 2.94% 2.89% 2.92% 2.88%
Gamma. 2.56% 2.50% 2.49% 2.51% 2.59% 2.64%
Median. 3.15% 3.19% 3.31% 3.28% 3.39% 3.31%

B. Simulation Results

Starting with the stochastic Robert’s cross circuit, we
simulate the processing of the sample image using the six
schemes described above. We simulate each one of the
three stochastic circuits based on these six schemes 10
times, each time with different initial conditions: 10 dif-
ferent LFSR seed values for each SNG and 10 different sets
of values for the periods of the local clocks. The results are
the average results of these trials. For each output image
we calculate the average output error rate as follows:

E =

∑256
i=1

∑256
j=1 |Ti,j − Si,j |

255.(256× 256)
× 100

where Si,j is the expected pixel value in the output image
and Ti,j is the pixel value produced using the stochastic
circuit.

Table IV shows the mean of the error rates of the re-
sults produced by processing the sample image with the
six schemes described above. By comparing the measured
accuracies of the first scheme, i.e., the “golden case”, to
the five polysynchronous schemes, we conclude that the
quality of the results and the accuracy of the computa-
tions are essentially independent of how well synchronized
the local clocks are. In fact, as this table shows, the clock
periods can vary by up to 100% without affecting the ac-
curacy of the results.

As can be seen in Table IV, in some cases, the mean
of the error in the polysynchronous circuits is actually
slightly below that of the synchronous case. This im-
provement can occur because polysynchronous clocks can
produce more random-looking input streams. So polysyn-
chrony might actually help instead of hurting stochastic
computation! The results from schemes 4-6 show that
filtering out runt pulses still produces statistically accept-
able results.

C. SPICE-Level Verification

For a circuit-level verification of the proposed idea,
we implemented the SPICE netlist of the Robert’s cross
stochastic circuit. Simulations were carried out using a 45-
nm gate library in HSPICE on 500 sets of random input
values, for both synchronous and polysynchronous clock-
ing conditions. Each set of inputs consisted of four differ-
ent random values.

For the conventional synchronous clocking condition,
the circuit’s clock period was fixed at 1ns. For the
polysynchronous clocking conditions, clock periods were
selected randomly in the range from 1ns to 2ns (so 100%
variation). Note that the period corresponds to a single
bit in the random stream.

The accuracy of the results was computed by calcu-
lating the difference between the expected value and the
measured value. On 500 trials, we found that the mean of
the output error rates was 4.91% for the synchronous and
4.42% for the polysynchronous approach. Hence, we can
conclude that polysynchronous stochastic circuits are es-
sentially as accurate as conventional synchronous circuits.

V. CONCLUSIONS and FUTURE DIRECTIONS

This paper presented a novel paradigm for sequential
computation that is synchronous, but only loosely so.
It is predicated on the paradigm of stochastic comput-
ing. Many of the functions that we seek to implement
for computational systems such as signal processing are
arithmetic functions, consisting of operations like addi-
tion and multiplication. Complex functions such as ex-
ponentials and trigonometric functions are generally com-
puted through polynomial approximations, so consist of
multiplications and additions. Such functions can be im-
plemented with remarkably simple logic in the stochastic
paradigm. Simple hardware generally translates to low
power consumption. Certainly, it translates to low leak-
age power consumption, a metric of eminent concern to
modern integrated circuit designers. Admittedly, stochas-
tic computations are slow due to the length of the bit
streams. The latency scales very poorly with accuracy.
However, simple logic translates to short critical paths,
so stochastic circuits can potentially run at much higher
clock rates.

Another important benefit of the stochastic paradigm is
the flexibility that it provides with respect to the clocking
mechanism. Indeed, stochastic logic computes accurately
irrespective of the temporal alignment of input values, so
it can tolerate arbitrary amounts of clock skew. As a
result, we can replace a global clock and its associated
clock distribution network with locally generated clocks.
These can be simple, fast inverter rings, for instance.

This paper discusses polysynchronous stochastic com-
putation as a proof of concept. We demonstrate the crit-
ical feature that the accuracy of the computation is not
impacted if a global clock is replaced with unsynchronized
local clocks. We did not perform a full implementation to
quantify the savings obtained by eliminating the CDN in
integrated circuits. Obviously, the area, power and design
complexity will all be impacted in positive sense if we can
eliminate the CDN. Also, we did not discuss the input
and output mechanisms needed to support the stochastic
paradigm.

Indeed, the question of how unsynchronized values can

interface with non-stochastic logic is an important one.
In our vision, circuits will process stochastic values from
input to output. We have been exploring efficient mecha-
nisms for analog-to-digital (A/D) conversion at the circuit
inputs, with devices that generate stochastic bit streams
directly from analog sources. These devices – essen-
tially modified sigma-delta converters – are highly effi-
cient. They provide random bit streams at no extra cost;
in fact, they are significantly less costly in terms of area
and power than full sigma-delta converters. Similarly we
are exploring highly efficient digital-to-analog (D/A) con-
verters for the circuit outputs. These produce accurate
analog signals directly based on the fraction of time that
digital signals are high, irrespective of pulse widths. Our
polysynchronous stochastic approach provides exactly this
form of output: the values correspond to the fraction of
time that signals are high, without any concern for pulse
widths.

We conclude that the polysynchronous stochastic ap-
proach is a good fit for applications that require only
modest accuracy but call for low cost, low power and high
resiliency. In future work, we will make this case with
a comparison of full integrated circuit designs, including
clock mechanisms and I/O circuitry.

VI. Acknowledgement

This work was supported in part by National Science
Foundation grant no. CCF-1408123. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the NSF.

References

[1] E.G. Friedman. Clock distribution networks in synchronous
digital integrated circuits. Proceedings of the IEEE, 89(5):665–
692, May 2001.

[2] Y. Jiang, H. Zhang, H. Zhang, H. Liu, X. Song, M. Gu, and
J. Sun. Design of mixed synchronous/asynchronous systems
with multiple clocks. Parallel and Distributed Systems, IEEE
Transactions on, PP(99):1–1, 2014.

[3] D. Chapiro. Globally-asynchronous locally-synchronous sys-
tems. Stanford University, 1984.

[4] B.R. Gaines. Stochastic computing systems. In JuliusT. Tou,
editor, Advances in Information Systems Science, Advances in
Information Systems Science, pages 37–172. Springer US, 1969.

[5] W. Qian and M.D. Riedel. The synthesis of robust polynomial
arithmetic with stochastic logic. In 45th ACM/IEEE Design
Automation Conference, DAC’08, pages 648–653, 2008.

[6] Weikang Qian, Xin Li, M.D. Riedel, K. Bazargan, and D.J.
Lilja. An architecture for fault-tolerant computation with
stochastic logic. Computers, IEEE Transactions on, 60(1):93–
105, Jan 2011.

[7] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. Riedel. The
synthesis of complex arithmetic computation on stochastic bit
streams using sequential logic. In Computer-Aided Design,
2012. ICCAD 2012. IEEE/ACM International Conference on.
IEEE, 2012.

[8] Peng Li, D.J. Lilja, Weikang Qian, K. Bazargan, and M.D.
Riedel. Computation on stochastic bit streams digital image
processing case studies. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 22(3):449–462, March 2014.

[9] Armin Alaghi and John P. Hayes. Survey of stochastic com-
puting. ACM Trans. Embed. Comput. Syst., 12(2s):92:1–92:19,
May 2013.

[10] A. Alaghi and J.P. Hayes. Fast and accurate computation using
stochastic circuits. In Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2014, pages 1–4, March
2014.

[11] Peng Li and D.J. Lilja. A low power fault-tolerance architec-
ture for the kernel density estimation based image segmentation
algorithm. In Application-Specific Systems, Architectures and
Processors (ASAP), 2011 IEEE International Conference on,
pages 161–168, Sept 2011.

[12] A. Alaghi, Cheng Li, and J.P. Hayes. Stochastic circuits for
real-time image-processing applications. In Design Automation
Conference (DAC), 2013 50th ACM / EDAC / IEEE, pages
1–6, May 2013.

[13] M.H. Najafi and M.E. Salehi. A fast fault-tolerant architecture
for Sauvola local image thresholding algorithm using stochas-
tic computing. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, May 2015.

[14] M. Ranjbar, M.E. Salehi, and M.H. Najafi. Using stochas-
tic architectures for edge detection algorithms. In Electrical
Engineering (ICEE), 2015 23rd Iranian Conference on, pages
723–728, May 2015.

[15] Bingzhe Li, M.H. Najafi, and D.J. Lilja. An FPGA implementa-
tion of a restricted boltzmann machine classifier using stochas-
tic bit streams. In Application-specific Systems, Architectures
and Processors (ASAP), 2015 IEEE 26th International Con-
ference on, pages 68–69, July 2015.

[16] A. Naderi, S. Mannor, M. Sawan, and W.J. Gross. Delayed
stochastic decoding of ldpc codes. Signal Processing, IEEE
Transactions on, 59(11):5617–5626, Nov 2011.

[17] S.S. Tehrani, S. Mannor, and W.J. Gross. Fully parallel stochas-
tic ldpc decoders. Signal Processing, IEEE Transactions on,
56(11):5692–5703, Nov 2008.

[18] S.S. Tehrani, W.J. Gross, and S. Mannor. Stochastic decoding
of ldpc codes. Communications Letters, IEEE, 10(10):716–718,
Oct 2006.

[19] Qianying Tang, Bongjin Kim, Yingjie Lao, K.K. Parhi, and
C.H. Kim. True random number generator circuits based on
single- and multi-phase beat frequency detection. In Custom
Integrated Circuits Conference (CICC), 2014 IEEE Proceed-
ings of the, pages 1–4, Sept 2014.

[20] Won Ho Choi, L.V. Yang, Jongyeon Kim, A. Deshpande,
Gyuseong Kang, Jian-Ping Wang, and C.H. Kim. A magnetic
tunnel junction based true random number generator with con-
ditional perturb and real-time output probability tracking. In
Electron Devices Meeting (IEDM), 2014 IEEE International,
pages 12.5.1–12.5.4, Dec 2014.

