
A

The Synthesis of Cyclic Dependencies
with Boolean Satisfiability1

John D. Backes and Marc D. Riedel

Department of Electrical and Computer Engineering
University of Minnesota
200 Union St. S.E., Minneapolis, MN 55455
{back0145, mriedel}@umn.edu

The accepted wisdom is that combinational circuits must have acyclic (i.e., feed-forward) topologies. Yet
simple examples suggest that this is incorrect. In fact, introducing cycles (i.e., feedback) into combinational
designs can lead to significant savings in area and in delay. Prior work described methodologies for syn-
thesizing cyclic circuits with sum-of-product (SOP) and binary-decision diagram (BDD)-based formulations.
Recently, techniques for analyzing and mapping cyclic circuits based on Boolean satisfiability (SAT) were
proposed. This paper presents a SAT-based methodology for synthesizing cyclic dependencies. The strat-
egy is to generate cyclic functional dependencies through a technique called Craig interpolation. Given a
choice of different functional dependencies, a branch-and-bound search is performed to pick the best one.
Experiments on benchmark circuits demonstrate the effectiveness of the approach.

1. INTRODUCTION
New ideas pass through three periods:
(1) “It can’t be done.”
(2) “It probably can be done, but it’s not worth doing.”
(3) “I knew it was a good idea all along!”

–Arthur C. Clarke (1917–2008)
1.1. Cyclic Combinational Circuits

Digital circuits are classified into two types:

— Combinational circuits have outputs that depend only on the current inputs.
— Sequential circuits have outputs that depend on past as well as current inputs.

Thus, sequential circuits maintain state, whereas combinational circuits do not.
In order to maintain state, sequential circuits must have cyclic configurations (i.e.,

loops or feedback paths). Indeed, sequential circuits are typically built with the out-
puts of state-holding elements feeding back to the inputs of blocks of combinational
circuitry.

“It can’t be done.”

A common misconception is that combinational circuits must have acyclic topolo-
gies; that is to say, they must be designed without any loops or feedback paths. Indeed,
any acyclic circuit is clearly combinational: once the current values of the inputs are
set, the signals propagate to the outputs; the outputs are determined regardless of the
prior values on the wires, making them independent of the past sequence of inputs.
The idea that “combinational” and “acyclic” are synonymous terms is so thoroughly in-

1This research has been funded in part by a grant from the SRC Focus Center Research Program on
Functional Engineered Nano-Architectonics (FENA), contract No. 2003-NT-1107 and by an NSF CAREER
Award, No. 0845650.

grained that many textbooks provide the latter as a definition of the former (e.g., [Katz
1992], p. 14; [Wakerly 2000], p. 193).

And yet, circuits with cyclic topologies can be combinational. Consider the circuit
in Figure 1. It consists of six alternating AND and OR gates, with inputs x1, x2, x3

repeated. To demonstrate that the circuit is combinational, we label the feedback path
with an unknown value y, as shown in Figure 2.

1
x

2
x

3
x

1
x

2
x

3
x

1
f

2
f

3
f

4
f

5
f

6
f

g2g1 g3 g5g4 g6

Fig. 1. A cyclic combinational circuit.

1
x

2
x

3
x

1
x

2
x

3
x

1
f

2
f

3
f

4
f

5
f

6
f

g2g1 g3 g5g4 g6y

Fig. 2. Analyzing the circuit of Figure 1.

We compute
f1 = x1y
f2 = x2 + f1 = x2 + x1y
f3 = x3f2 = x3(x2 + x1y)
f4 = x1 + f3 = x1 + x3(x2 + x1y) = x1 + x2x3

f5 = x2f4 = x2(x1 + x2x3) = x2(x1 + x3)
f6 = x3 + f5 = x3 + x2(x1 + x3) = x3 + x1x2.

(Here addition represents OR and multiplication represents AND.) We see that f4, and
consequently f5 and f6, do not depend upon the unknown value. Thus, we compute

f1 = x1f6 = x1(x3 + x1x2) = x1(x2 + x3)
f2 = x2 + f1 = x2 + x1(x2 + x3) = x2 + x1x3

f3 = x3f2 = x3(x2 + x1x3) = x3(x1 + x2).

Each output depends on the current input values, not on the prior values, and so the
circuit is combinational. This example demonstrates that “combinational” and “acyclic”
are not synonymous terms.

In 1977, Rivest presented the example in Figure 1, in a paper less than a page
long [Rivest 1977]. His work on the topic seems to have gone largely unnoticed by
theoreticians and practitioners alike.

2

“It probably can be done, but it’s not worth doing.”

Although conceptually possible, one might argue that there is no point in designing
combinational circuits with feedback. Why should one incorporate feedback paths in
the computation of the output values? By definition, the values fed back depend upon
the prior state of the circuit, which we want to ignore when designing combinational
circuits.

Counter-intuitively, it can be advantageous to design combinational circuits with
feedback. Consider again the circuit in Figure 1. Note that the six output functions are
distinct, and each depends on all three input variables. Moreover, we can show that
this cyclic circuit has fewer gates than any equivalent acyclic circuit. To see this, note
that any acyclic configuration contains at least one gate producing an output function
that does not depend on the output of any other gate producing an output function. (If
this were not the case, then every output gate would depend upon another and so the
circuit would be cyclic.)

x2

x3

x1

)(321 xxx +ANDOR

Fig. 3. With fan-in two gates, two gates are needed to compute x1(x2 + x3).

With fan-in two gates, it takes two gates to compute any one of the six functions by
itself. This is illustrated in Figure 3. We conclude that an acyclic implementation of
the six functions requires at least seven gates, compared to the six in the cyclic circuit.

Generalizing this example, for any odd integer n greater than 1, consider a circuit
consisting of n two-input AND gates alternating with n two-input OR gates in a single
cycle, with inputs x1, . . . , xn repeated, as shown in Figure 4. Analyzing the general

1
x

2
x nx

g
2

g
1

g
2n

1
x

2
x

g
n+2

g
n+1

f
2n

f
2

f
1

f
n+2

f
n+1

Fig. 4. A cyclic combinational circuit with n inputs (for any odd n ≥ 3) due to Rivest.

circuit in the same manner as above, we find that it implements the functions

f1 = x1(xn + xn−1(· · · (x3 + x2) · · ·))
f2 = x2 + x1(xn + · · · (x4x3) · · ·)

...
f2n = xn + xn−1(xn−2 + · · · (x2x1) · · ·).

3

Note that the functions are symmetrical with respect to a cyclic permutation of the
variables.

This circuit produces 2n distinct output functions, each of which depends on all n in-
put variables. Any acyclic circuit implementing the same 2n output functions requires
at least 3n− 2 fan-in two gates. Thus, asymptotically, this circuit is at most two-thirds
the size of the smallest possible acyclic circuit computing the same functions.

Inspired by the work of Rivest, we have generated a variety of cyclic examples with
the same property as his circuit: they have provably fewer gates than equivalent
acyclic circuits. Most notably, we have found a family of circuits that are asymptot-
ically one-half the size [Riedel 2004]. Admittedly, such constructs are of theoretical
interest only.

As a practical example, consider the circuit shown in Figure 5, ubiquitous in intro-
ductory logic design courses: a 7-segment display decoder. The inputs are four bits,
x0, x1, x2, and x3, specifying a number from 0 to 9. The outputs are 7 bits, a, b, c, d, e, f ,
and g, specifying which segments to light up in a display – such as that of a digital
alarm clock – to form the image of this number. Our goal is to design a circuit that
implements the functions shown in Figure 6.

inputs outputs
x3 x2 x1 x0 Digit a b c d e f g
0 0 0 0 0 1 1 1 0 1 1 1
0 0 0 1 1 0 0 0 0 0 1 1
0 0 1 0 2 0 1 1 1 1 1 0
0 0 1 1 3 0 0 1 1 1 1 1
0 1 0 0 4 1 0 0 1 0 1 1
0 1 0 1 5 1 0 1 1 1 0 1
0 1 1 0 6 1 1 0 1 1 0 1
0 1 1 1 7 0 0 1 0 0 1 1
1 0 0 0 8 1 1 1 1 1 1 1
1 0 0 1 9 1 0 1 1 0 1 1

�

�

�

�

�

�

�

Fig. 5. 7-Segment Display Decoder.

a = x̄0x2x̄3 + x̄1(x̄2(x3 + x̄0) + x2x̄3)

b = x̄0(x1x̄3 + x̄1x̄2)

c = x̄1x̄2x3 + x̄3(x0(x2 + x1) + x̄0x̄2)

d = x̄1x̄2x3 + x̄3(x2(x̄1 + x̄0) + x1x̄2)

e = x̄0x̄1x̄2 + x̄3(x0x̄1x2 + x1(x̄2 + x̄0))

f = x̄3(x̄0x̄1 + x0x1 + x̄2) + x̄1x̄2

g = x̄3(x2 + x0) + x̄1x̄2.

Fig. 6. Target functions for 7-Segment Display Decoder.

With our synthesis methodology, we arrive at the network shown in Figure 7, with
the ordering illustrated. This network translates into a cyclic circuit with 27 fan-in
two gates. In contrast, standard synthesis techniques produce an acyclic circuit with

4

a = x̄3x̄0 c̄ + x̄1 c

b = x̄0e

c = x̄3x2x0 + x̄2(x3x̄1 + e)

d = (x3 + x2) a + x1 e

e = x̄2(x1 + x̄0) f + x̄3 f̄

f = (x̄2 + x̄1x̄0) g + x̄3 ā

g = x̄3b̄ + a

a

g

df

b c

e

Fig. 7. A cyclic network for the example in Figure 6.

32 fan-in two gates. Note that the network in Figure 7 contains cyclic dependencies; in
fact, all the functions except d form a strongly connected component.

Practitioners have observed that cycles sometimes occur in combinational circuits
synthesized from high-level descriptions. For instance, cycles can be introduced during
resource-sharing optimizations at the level of functional units. Consider the example
in Figure 8. There are two functional units, F and G, operating on a datapath X, based
on a selecting input c. (Here F (X) and G(X) might be bit-level or word-level arithmetic
operations.) If c is 1, then the circuit computes

G(F (X)),

while if it is 0, it computes

F (G(X)).

Clearly, this is a valid and efficient design; yet it is all combinational logic and it is
cyclic.

Leon Stok lamented that EDA tools were rejecting such designs because there was
no way to validate them [Stok 1992]. In response, Malik discussed analysis techniques
for cyclic combinational circuits [Malik 1994]. His approach was topological, beginning
with a transformation from a cyclic specification to an equivalent acyclic one. Later
Shiple refined and formalized Malik’s results and extended the concepts to combina-
tional logic embedded in sequential circuits [Shiple 1996].

More recently, Neiroukh and Edwards discussed analysis strategies targeting cyclic
circuits that are produced inadvertently during design [Edwards 2003; Neiroukh et al.
2008]. Following a strategy similar to Malik’s, they proposed techniques for transform-
ing valid cyclic circuits into functionally equivalent acyclic circuits [Neiroukh et al.
2008]. Their algorithm enumerates partial Boolean assignments that break the feed-
back paths in cyclic circuits. The enumeration continues until enough assignments are
found to cover the entire input space. Based on these partial assignments, acyclic frag-
ments are assembled into a new acyclic circuit. As a starting point, they presume that
the given circuit is combinational and correctly mapped. The enumeration is explicit
and so the algorithm is potentially very slow, as it searches through an exponentially
large space of partial assignments.

We were the first to suggest a method for synthesizing cyclic circuits [Riedel and
Bruck 2003]. We implemented the method in a package called CYCLIFY, built within

5

c X c Xcc

cc

F G

))(())((XGFcXFGc ⋅+⋅

Fig. 8. Functional units connected in a cyclic topology.

the Berkeley SIS environment [Sentovich et al. 1992]. The tool was successful: it re-
duced the area of benchmark circuits by as much as 30% and the delay by as much
as 25%. However, being based on SIS, the analysis routines in CYCLIFY used sum-of-
products (SOP) and binary decision diagram (BDD) representations for Boolean func-
tions. These representations limited the size of the circuits that could be analyzed and
optimized effectively.

“I knew it was a good idea all along!”

This paper aims to bring the topic of synthesizing cyclic combinational circuits into
the modern era, by exploiting the efficiency of SAT solving. So-called SAT-based tech-
niques, based on heuristic solutions to the Boolean satisfiability problem, have proved
very successful for tasks such as logic verification and model checking [Amla et al.
2005], [Larrabee 1992].

In related work, we have proposed an efficient SAT-based algorithm for analyzing
and mapping cyclic circuits [Backes et al. 2008; Backes and Riedel 2011]. We perform
SAT-based validation of cyclic designs at a gate level, after mapping to a library. When
mapping breaks the validity of a combinational circuit, SAT-based analysis returns

6

satisfying assignments; these assignments are used to modify the mapping in order to
ensure that the circuit remains combinational.

Admittedly, the task of analyzing cyclic circuits is complex. Yet there is no fundamen-
tal obstacle to performing tasks such as verification, mapping, and timing analysis on
cyclic circuits. So-called “false-path aware” algorithms for timing analysis take into
account false paths, providing tighter bounds on delay than purely topological meth-
ods [Kukimoto and Brayton 1997]. The complexity of this sort of timing analysis is,
in fact, the same for cyclic circuits as for acyclic circuits. Early formulations based
on SOPs and BDDs were never up to the task, but modern SAT-based algorithms are
powerful enough to perform false-path aware analysis.

Significantly, SAT-based algorithms lend themselves well to incremental analysis.
Often analysis and verification tasks are applied iteratively and incrementally in a
design flow: small changes are made to improve the circuit and then it is re-analyzed.
With incremental SAT solving, new queries can take advantage of cached results of
previous queries, making SAT-based analysis very efficient [Eén and Sörensson 2003].

Recently, a technique called Craig Interpolation has been used to leverage the infor-
mation generated by SAT solvers from unsatisfiable SAT instances [McMillan 2003].
In [Lee et al. 2007] the authors present a methodology for using Craig Interpolation
to generate functional dependencies. In this work, we show how this technique can be
used to generate cyclic dependencies.

1.2. Organization
This paper is organized as follows. Section 2 provides definitions and describes the
notation used throughout the paper. Section 3 discusses the underlying circuit and
network models. Section 4 presents the core contribution of the paper: a method for
generating cyclic functional dependencies via Craig interpolation. Section 5 describes
a branch-and-bound search technique for exploring the space of possible functional de-
pendencies in a network. Section 6 presents synthesis results on benchmarks. Finally,
Section 7 discusses future directions of research.

2. DEFINITIONS AND NOTATION
We use the standard notation: addition (+) denotes disjunction (OR), multiplication (·),
denotes conjunction (AND), an⊕ denotes inequivalence (exclusive OR), and an overbar
(x̄) denotes negation (NOT). The restriction operation (also known as the cofactor) of a
function f with respect to a variable x,

f |x=v,

refers to the assignment of the constant value v ∈ {0, 1} to x. A function f depends
upon a variable x iff f |x=0 is not identically equal to f |x=1. Call the variables that a
function depends upon its support set.

We use superscripts to denote a function’s ON and OFF sets: for a function
f(x0, x1,. . . , xn), we write f(x0, x1,. . . , xn)1 to denote its ON set (i.e., the set of assign-
ments to variables x0, x1,. . . , xn where f evaluates to 1); we write f(x0, x1,. . . , xn)0 to
denote its OFF set (i.e., the set of assignments to variables x0, x1,. . . , xn where f eval-
uates to 0).

An appearance of a variable in a Boolean formula, either negated or nonnegated, is
refered to as a literal. A clause is an OR of literals. A Boolean formula is in conjunctive
normal form (CNF) if it is an AND of clauses. A CNF formula is said to be satisfiable if
there is some assignment of its variables that causes the formula to evaluate to true.
A CNF formula is said to be unsatisfiable if there is no assignment of its variables that
causes the formula to evaluate to true. We sometimes refer to a CNF formula as a SAT

7

Instance. We will also refer to a circuit with a single primary output as a SAT instance;
the satisfiability of the primary output can be represented as a CNF formula.

3. CIRCUIT AND NETWORK MODEL
Analysis of an acyclic circuit is transparent. We first evaluate the gates connected only
to primary inputs, and then gates connected to these and primary inputs, and so on,
until we have evaluated all gates. The previous values of the internal signals do not
enter into play.

We adopt a ternary framework for analysis. We assume that, at the outset, all wires
in a circuit have undefined values, which we denote with the symbol ⊥. Here ⊥ cap-
tures both uncertainty as well as possible ambiguity: the signal might be 0 or 1 – but
we do not know which; or it might not even have logical value, i.e., it could be a volt-
age value between logical 0 and logical 1. We say that a variable’s value is definite or
known if its value is 0 or 1 and that it is indefinite or ambiguous if it is ⊥. The idea
of three-valued logic for circuit analysis is well established. It was originally proposed
for the analysis of hazards in combinational logic [Yoeli and Rinon 1964]. Bryant pop-
ularized its use for verification [Bryant 1987], and it has been widely adopted for the
analysis of asynchronous circuits [Brzozowski and Seger 1995].

Conceptually, when validating a cyclic circuit, we apply definite values to the inputs,
and track the propagation of signal values. Initially, each gate has an output value of
⊥. We ask: is there sufficient information to conclude that the gate output is 0 or 1? If
yes, we assign this value as the output; otherwise, the value ⊥ persists. For instance,
with an AND gate, if the inputs include a 0, then the output is 0, regardless of other
⊥ inputs. If the inputs consist of 1 and ⊥ values, then the output is ⊥. Only if all the
inputs are 1 is the output 1. This is illustrated in Figure 9. Input values that determine
the gate output are called controlling.

0

⊥
0

AND

1

⊥
⊥

AND

1

1

1
AND

Fig. 9. An AND gate with 0, 1, and ⊥ inputs.

Consider the circuit fragment in Figure 10. One might be tempted to reason as fol-
lows: the output of the AND gate g1 is fed in complemented and uncomplemented form
into the OR gate g2. Thus, one of the inputs to the OR gate must be 1, and so its output
must be 1. And yet, by definition, ⊥ designates an unknown, possibly undefined value.
(For instance, in an actual circuit, it could indicate a voltage value exactly half way
between logical 0 and logical 1.) In our analysis, we remain agnostic: the output of the
OR gate is ⊥.

1

⊥ ⊥
⊥

OR

g
2

AND

g
1

⊥

⊥
Fig. 10. An illustration unknown/undefined values ⊥.

In the analysis, we track the propagation of well-defined signal values. Once a defi-
nite value is assigned to an internal wire, this value persists for the duration (so long
as the input values are held constant). For any input assignment, a circuit reaches a

8

so-called fixed point in the ternary framework: a state where no further updates of con-
trolling values are possible. This fixed point is unique [Brzozowski and Seger 1995].
We adopt the following definition.

A circuit is combinational iff, for every assignment of input values, with all
the wires initially set to ⊥, the circuit reaches a fixed point that does not
contain any ⊥ values.

We illustrate our circuit model with cyclic examples: one that is not combinational and
one that is.

Example 3.1.
Consider the circuit shown in Figure 11, consisting of an AND gate g1, an OR gate g2,

and an AND gate g3, in a cycle. By inspection, note that if x1 = 0 then f1 assumes value
0; if x2 = 1 then f2 assumes value 1; and if x3 = 0 then f3 assumes value 0. But what
happens if x1 = 1, x2 = 0 and x3 = 1? In this case, all the outputs equal ⊥, as illustrated
in Figure 12. The outcome for all eight cases is shown in Figure 13. We conclude that
the circuit is not combinational.

1
x

2
x

3
x

1
f

2
f

3
f

g2g1 g3

ORAND AND

Fig. 11. A cyclic circuit that is not combinational.

�
�

�
�

�
�

����� ���

� ��

⊥ ⊥ ⊥
Fig. 12. The circuit of Figure 11 with x1 = 1, x2 = 0 and x3 = 1.

x1 x2 x3 f1 f2 f3
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 ⊥ ⊥ ⊥
1 1 0 0 1 0
1 1 1 1 1 1

Fig. 13. Analysis of the circuit in Figure 11.

9

Example 3.2. Consider the circuit in Figure 14. Let us consider a specific assignment
of values to the inputs: suppose that we assign x1 = 1, x2 = 0, x3 = 1, as shown in
Figure 15. Gates g1, g3, g5 and g7 produce outputs of 1, 0, 0, and 1, respectively. Gate g2
produces an output of 1. Gate g8 produces an output of 0. Gate g9 produces an output of
0. Gate g6 produces an output of 0. Finally, gate g4 produces an output of 0. The analysis
for all eight input combinations is summarized in Table 16. We conclude that the circuit
is combinational.

4. FUNCTIONAL DEPENDENCIES
The algorithms and concepts presented in this paper are applicable to technology-
independent synthesis. At this level, a circuit is specified as a network that computes
Boolean functions. Ultimately, such a network gets mapped to gates in a specific tech-
nology. The validity of a cyclic combinational circuit is properly established in terms
of controlling values at the technology level. At the network level, we validate circuits
in terms of functional dependencies. The notion of a function depending on a variable
is similar but not identical to the concept of a Boolean value controlling the output of
a gate. There can be subtle issues when mapping valid network-level cyclic specifica-
tions to gate-level specifications. For a discussion of theses issues, we refer the reader
to [Backes et al. 2008; Backes and Riedel 2011].

At the network level, a circuit is specified as a collection of nodes N . Associated
with each node is a node function fi and a corresponding internal variable yi, 0 ≤ i ≤
n− 1. (We sometimes abuse the notation by using the same name for the function and
the corresponding internal variable, saying calling them both fi). The node functions
can depend on input variables as well as on other internal variables. In a network’s
dependency graph, a directed edge is drawn from node i to node j iff the node i is in
the support set of node function fj .

The process of multilevel logic synthesis typically consists of an iterative application
of minimization, decomposition, and restructuring operations [Brayton et al. 1990].
An important step at the technology-independent stage is the task of structuring func-
tional dependencies. (With SOP representations, this step was called substitution or
resubstitution.) In this step, node functions are expressed or re-expressed in terms of
other node functions as well as the primary inputs.

For each node function, different choices might be available as dependencies yielding
alternative expressions of varying cost. Throughout this paper, we will focus on sup-
port set size as our cost metric. Given the focus on technology-independent synthesis
algorithms, based on Boolean satisfiability, this metric is appropriate. (If we were us-
ing an SOP representation, we could use literal counts instead.) Consider the functions
f1 and f2,

f1 = bcx + bdx + ab (1)
f2 = abcx̄ + cx + d. (2)

Figure 17 shows four different expressions for the functions and the corresponding
dependency graphs. Figure 17.a shows expressions for f1 and f2, both in terms of the
primary input variables only. With a support set of {a, b, c, d, x}, the cost of both of these
expressions is 5, so the total cost is 10.

Figures 17.b and 17.c show alternate expressions, obtained by introducing functional
dependencies. In Figure 17.b, f1 is expressed in terms of f2 and {a, b, x}. Accordingly,
the total cost is 9. In Figure 17.c, f2 is expressed in terms of f1 and {c, d, x}. Accordingly,
the total cost is also 9.

In existing methodologies, a total ordering is enforced among the functions in this
phase in order to ensure that no cycles occur. In this example, the ordering of f2 v f1

10

x1

g8

w1

w3

w2

g5

x2

x3

g2

x1

x1

g9

g6

x2g4

x3

g3

x1

g7

g1

w4

w5

w6

w7

w9

w8

Fig. 14. A cyclic combinational circuit with two cycles.

g8

1

0

1

g5

g2

1

g9

g6

g4

g3

1

g7

g1

0

0

0

1

0

0

1
3
x

0
2
x

1
1
x

1
1
x

0
2
x

1
3
x

Fig. 15. The circuit in Figure 15 with x1 = 1, x2 = 0, x3 = 1.

x1 x2 x3 g1 g2 g3 g4 g5 g6 g7 g8 g9
0 0 0 0 0 1 1 0 1 0 0 1
0 0 1 1 0 1 1 0 1 0 0 1
0 1 0 0 0 1 1 0 0 0 0 1
0 1 1 1 0 0 0 1 0 1 1 1
1 0 0 0 0 0 1 0 1 1 1 1
1 0 1 1 1 0 0 0 0 1 0 0
1 1 0 1 1 0 1 1 0 1 0 0
1 1 1 1 1 0 0 1 0 1 0 0

Fig. 16. Analysis summary for the circuit of Figure 14.

11

f1 = bcx + bdx + ab

f2 = abcx̄ + cx + d

� � � ������
�����

(a) f1(a, b, c, d, x) and f2(a, b, c, d, x)

f1 = bxf2 + ab

f2 = abcx̄ + cx + d

� � � ����
�����

(b) f1(a, b, x, f2) and f2(a, b, c, d, x)

f1 = bcx + bdx + ab

f2 = cx + cf1 + d

� � � ������ ���
(c) f1(a, b, c, d, x) and f2(c, d, x, f1)

f1 = bxf2 + ab

f2 = cx + cf1 + d

� � � ���� ���
(d) f1(a, b, x, f2) and f2(c, d, x, f1)

Fig. 17. Four different implementations of two functions, f1 and f2, of five variables a, b, c, d, and x.

would produce the expressions in Figure 17.b; the ordering of f1 v f2 would produce
the expressions in Figure 17.c. Insisting upon an ordering means that we would have
to choose one of these two results.

However, if we allow cyclic dependencies, we can find a better solution. Figure 17.d
show expressions for f1 and f2 with support sets of {a, b, x, f2} and {c, d, x, f1}, so a total
cost 8. As the dependency graph in Figure 17.d illustrates, the functional dependencies
are cyclic. Yet for every assignment of the primary input variables a, b, c, d, and x, the
functions evaluate to definite Boolean values. The functions and dependency graphs
for functions f1 and f2 when x is 0 and x is 1 are shown in Figure 18. We see that, for
any assignment of x, the cyclic dependency between f1 and f2 is broken, so the result
is combinational.

12

f1 = ab

f2 = cf1 + d

� � � ���� ���
(a) f1(a, b, 0, f2) and f2(c, d, 0, f1)

f1 = ab + bf2

f2 = c + d

� � � ���� ���
(b) f1(a, b, 1, f2) and f2(c, d, 1, f1)

Fig. 18. Functions f1(a, b, x, f2) and f2(c, d, x, f1) with x = 0 and x = 1. For both values of x, the depen-
dency graphs become acyclic.

Of course, not all choices of cyclic dependencies are valid. Many will result in net-
works that are not combinational. Suppose we wish to compute some complicated func-
tion f and its complement f̄ . Saying that

f = f̄ ,

f̄ = f,

is evidently meaningless.
In an earlier era, functional dependencies were generated through SOP minimiza-

tion with don’t cares [Brayton et al. 1990]. The main contribution of this paper is an
efficient strategy for synthesizing valid cyclic dependencies, based on the modern con-
cepts of Craig interpolation and Boolean satisfiability.

4.1. Functional Dependencies with Craig Interpolation
In a seminal paper, McMillan proposed a SAT-based method for symbolic model check-
ing based on computing so called Craig interpolants [McMillan 2003]. In [Lee et al.
2007], the method was applied to the problem of synthesizing functional dependen-
cies. Broadly, the strategy is to formulate an instance of Boolean satisfiability (SAT)
that asks whether or not a target function can be implemented with a certain support
set. A proof of unsatisfiability, returned by a SAT solver, is converted into a circuit that
computes the target function. We give a brief review of the method here, noting that
in its current form, it is only applicable to acyclic orderings. In the next section, we
generalize the method to cyclic orderings.

The method constructs a miter, as shown Figure 19. Here f0 is the target function.
The satisfiability of the primary output of this circuit indicates whether or not there
exists a dependency function h(f1,f2,f3) that can be used to represent f0 for some net-
work. Here f0 Left and f0 Right are two copies of the same network. The primary
inputs x0, x1, . . . , xn (referred to as X) are the primary inputs to f0 Left. The primary
inputs x0*, x1*, . . . , xn* (referred to as X*) are the primary inputs to f0 Right; these

13

are distinct sets of variables, but in direct correspondence with one another: fi(X) is
equivalent to fi*(X*) where the assignment of X is equal to the assignment of X*.

If the primary output of this circuit is satisfied, then this indicates that f0 evaluates
to a different value from f0* while functions f1, f2, and f3 evaluate to the same values
of f1*, f2*, f3*, respectively, on each side of the circuit for some assignment of X and
X*. Clearly this indicates that the ON set f0(f1,f2,f3)1 is not disjoint from the OFF set
f0(f1,f2,f3)0. Accordingly, there is no function h(f1,f2,f3) that is equivalent to f0(X) (or
to f0*(X*)).

If the primary output of the circuit is unsatisfiable for all assignments of X and X*,
this indicates that either f0 (or f0*) is a constant 1 or 0, or that the ON set f0(f1,f2,f3)1
is disjoint from the OFF set f0(f1,f2,f3)0. This indicates that there is some function
h(f1,f2,f3) that is functionally equivalent to f0(X).

In [Lee et al. 2007], a method is proposed for finding the dependency function h
using Craig interpolation. The underlying details of the approach to computing h are
not important; it is only important that the reader understands that if the ON set of a
function f (f0,f1,. . . ,fn)1 is disjoint from the OFF set f (f0,f1,. . . ,fn)0 then a function h
can be computed by generating an interpolant from a SAT instance that is similar to
that in Figure 19.

� � ��� �
� � � � � � � �
�� �� �	

� �
���
� �� � �� � � � � ��
������ �	�

� � �� �� � � �� �� � � �� ����SAT?

� � � � � �
� �

Fig. 19. A miter that checks to see if f0 can be specified in terms of f1, f2, and f3.

4.2. Generating Cyclic Functional Dependencies
A cyclic circuit is not combinational if, for some assignment of the circuit’s primary
inputs, the value of some function in the circuit remains ambiguous. In a sense, deter-
mining whether or not a cyclic circuit is combinational is a similar problem to that of

14

determining whether or not a target function can be implemented in terms of a specific
support set. In both problems, a negative answer can be proven by comparing pairs of
rows of a function’s truth table. This is illustrated in the following example.

Figure 20 shows the truth tables for two functions f0 and f1. Consider the third
and fourth rows of the truth table for function f0 and the first and second rows of
the truth table for function f1. For each pair of rows, the primary input variables are
assigned the same values (a = c = 0, b = 1). However, the output values of f0 and f1
both toggle between 1 and 0. So, for this assignment, the value of f0 depends on the
value of f1 and the value of f1 depends on the value of f0. A fixed point is reached;
because of the mutual dependence, the values of f0 and f1 are both ⊥ in the fixed
point. Figure 21 shows the functions f0 and f1 and the resulting dependency graph
under this assignment.

PROPOSITION 4.1.
Let G be a cyclic dependency graph and let T be the set of truth tables for each function

in G. Let R be a set of doubles where each double corresponds to a pair of rows in one of
the truth tables. More formally, R is expressed as:

R = { {x, y} | ∃t((t ∈ T) ∧ (x ∈ t) ∧ (y ∈ t) ∧ (x 6= y)) }

with the added condition that there is only one pair {x, y} ∈ R for each truth table.
G is not combinational if and only if, for some choice of R, the following three condi-

tions hold.

(1) The primary input variables have the same value in every row in every element of
R.

(2) If the output value of some function in some element of R is the same for each of the
two rows, then the function also has this value in every other element of R for which
this function appears2.

(3) The output value of some function differs between the rows in some element of R.

a, b, f1 f0
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

a, c, f0 f1
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

� � � ��� ��
f0 = āb̄ + ab + f1b

f1 = f̄0ā + āc

Fig. 20. The truth tables for two functions. The cyclic dependency graph containing these two functions is
not combinational.

PROOF.
The first two conditions force the choice of R to correspond to a fixed point in G

reached by some primary input assignment.

2If some function f is not in the support set of some function g, then f will not appear in the pair of rows
selected from g’s truth table.

15

� � � �
f0 = f1 (3)
f1 = f̄0 (4)

Fig. 21. The dependency graph for the functions in Figure 20 for the assignment: a = c = 0, b = 1. The
dependency graph is not combinational.

The first condition asserts that the assignment of the primary input variables must
be the same in every row of every element of R. If the primary input assignment is
a controlling assignment for some function, then that function’s output value will not
differ between the two rows in that function’s corresponding element in R.

The second condition asserts that if the output value of some function is the same
between two rows in some element of R, then the variable corresponding to this func-
tion in other rows of other elements of R must also be assigned this value. Essentially
this condition guarantees that if the value of some function is controlled to either 0
or 1, then this value is propagated to every other function that contains the function
as a support variable. If this value causes another function to be controlled, then the
value of that function propagates to other functions containing that function as a sup-
port variable. As was discussed in Section 3, eventually this propagation halts, and the
circuit reaches a unique fixed point.

However, the value of some function might not be controlled by the value of its sup-
port variables. If the output value of some function differs between two rows in some
element of R, this indicates that the output value of the function is ambiguous. In
other words, if a function’s output value differs between two rows, this corresponds to
that function evaluating to ⊥.

The third condition asserts that one of the functions evaluates to ⊥ in the fixed
point. Our definition of combinationality states that if a ⊥ value persists in a fixed
point reached by some primary input assignment, then the dependency graph is not
combinational. For a network that is not combinational, a choice of R that corresponds
to this fixed point will satisfy all three of these conditions.

Similarly, a combinational dependency graph never contains a ⊥ value in its fixed
point for any assignment of its primary input variables. Therefore these three condi-
tions can never be satisfied for any choice of R for a network that is combinational.

Craig Interpolation provides an implementation for each target function in a de-
pendency graph [Lee et al. 2007]. Given this implementation, a SAT instance can be
formulated that is satisfiable if and only if the three conditions above are met. A circuit
whose satisfiability indicates that these three conditions are met for the functions in
Figure 20 is shown in Figure 22.

The SAT instance contains two copies of functions f0(a, b, f1) and f1(a, b, f0). In each
copy of these two circuits, the primary input variables are kept the same (satisfying
Condition 1 of Proposition 4.1). Additional logic is added that computes the OR of the
Exclusive OR of each copy of each function (satisfying Condition 3 of Proposition 4.1).
Finally, the additional clauses shown in the box on the upper left-hand side of the
figure can be added to the SAT instance to assert that Condition 2 holds. If the SAT
instance is satisfiable, then all three conditions are satisfied and the cyclic dependency
between functions f0(a, b, f1) and f1(a, b, f0) is proven to be non-combinational.

16

f0 Left f0 Right f1 Left f1 Right

a b f1
L

a b f1
R

a c f0
L

a c f0
R

f0 f0
* f1 f1

*

Condition 3

(f0 + f0
*
+ f0

L
)(f0 + f0

*
+ f0

R
)

(f0 + f0
*
+ f0

L
)(f0 + f0

*
+ f0

R
)

(f1 + f1
*
+ f1

L
)(f1 + f1

*
+ f1

R
)

(f1 + f1
*
+ f1

L
)(f1 + f1

*
+ f1

R
)

Condition 2

Condition 1

SAT?

Fig. 22. A SAT instance that verifies whether or not the functions described in Figure 20 are combinational.

4.3. General Method
We sketch the steps to generate the SAT instance for any set of functions F = {f0, f1,
. . ., fn−1} of variables X = {x0, x1, . . ., xm−1}
(1) Generate an implementation for each target function in terms of its support vari-

ables via Craig interpolation. Create two copies of each of these implementations.
Refer to one copy as the left copy and the other copy as the right copy. We define
CNFR

i (X,F) and CNFL
i (X,F) to be the set of clauses representing the logic for the

left and right copies respectively, of function fi. Here X is the set of primary input
variables in the support set of function fi and F is the set of internal variables in
the support set of function fi.

(2) Share the same primary input variables X between every copy. Share the same
internal variables between every left copy and share the same internal variables
between of every right copy. Let FL = {fL

0 , fL
1 , . . ., fL

n−1} be the set of left internal
variables and let FR = {fR

0 , fR
1 , . . ., fR

n−1} be the set of right internal variables.

c1 =
∏n−1

i=0 (CNFL
i (X,FL)↔ fi)(CNFR

i (X,FR)↔ f∗
i) (5)

(3) Assert the OR of the Exclusive OR of each left and right copy of each function:

c3 =
∑n−1

i=0 (fi ⊕ f∗
i) (6)

(4) For each function, assert that the corresponding left internal variable is TRUE if
the left and right copies of the function are both TRUE. For each function, assert
that the corresponding left internal variable is FALSE if the left and right copies

17

of the function are both FALSE. The analogous assertions must also be made for
each right internal variable.

c2 =
∏n−1

i=0 (f̄i + f̄∗
i + fL

i)(f̄i + f̄∗
i + fR

i)(fi + f∗
i + f̄L

i)(fi + f∗
i + f̄R

i) (7)

PROPOSITION 4.2.
Some choice of R for some set of functions satisfies the three conditions in Proposi-

tion 4.1 if and only if (c1)(c2)(c3) is satisfiable.

PROOF.
Step 1 of the general method creates two copies of every function. The value of the

support variables in each copy corresponds to the value of the variables in each element
of R. The conditions in c1 assert that the primary input variables must be assigned
the same value in every copy of every function. This corresponds to Condition 1 in
Proposition 4.1. The conditions in c3 assert that some function’s output value differs
between its left and right copies. This corresponds to Condition 3 in Proposition 4.1.

Finally, c2 asserts that if the value of some function is the same between its left
and right copies, then the support variables corresponding to this function in every
other copy are also assigned this value. This corresponds to Condition 2 of Proposi-
tion 4.1. If the SAT instance (c1)(c2)(c3) is satisfiable, then all the conditions of 4.1
can be met for some choice of R. If (c1)(c2)(c3) is unsatisfiable, then the three condi-
tions from Proposition 4.1 can never be simultaneously satisfied, and the network is
deemed combinational.

5. SYNTHESIZING CYCLIC DEPENDENCIES
Given a choice of functional dependencies, that is to say, a choice for the support set
of each target function, the algorithm in the previous section provides a constructive
method for synthesis: if the answer to the SAT-based query is “unsatisfiable” then,
through Craig interpolation, the algorithm provides the logic that implements the tar-
get functions with the specified support set.

In this section, we describe a synthesis methodology for finding the best choice of
functional dependencies. Our cost metric is the size of the support set of each function.
In the corresponding dependency graphs, this corresponds to the fewest possible edges.
To accomplish this task, we use a branch-and-bound algorithm that searches through
the space of possible dependency graphs.

This algorithm is described with pseudocode in Figure 23. The routine “Synthesis”
receives a set of Boolean functions as arguments. It first constructs a list of possible
support sets for each function. Initially, it chooses a dependency graph containing the
smallest possible support set for each function. This solution, as well as the list of
possible support sets for each function, is sent to the “BreakDown” routine.

The “BreakDown” routine checks to see if the dependency graph that it is given is
combinational. If the graph is not combinational, it iterates over all the functions that
are found to be non-combinational.3 For each of these functions, the current support
set is replaced by the next smallest support set available in the list. If the dependency
graph containing this next smallest solution is smaller that the best current solution,

3This can be accomplished by repeatedly solving a slightly modified version of the SAT instance described
in the previous section. The SAT instance is modified so that the only the function that it considers is the
one included in the OR gate described in Step 3 of the general method. This way, if the SAT instance is
satisfiable, it indicates that there is a primary input assignment where the function we are considering
evaluates to ⊥.

18

then a copy of this new dependency graph is sent recursively to the “BreakDown”
routine as a potential new best solution. The “BreakDown” routine returns when it
reaches a combinational solution. The smallest dependency graph is returned to the
“Synthesis” routine and the algorithm terminates.

BreakDown(Functions,DepGraph,SupportSetList):
if DepGraphIsCombinational(DepGraph) then

return DepGraph
else

for i = 0 to |Functions| do
if FunctionIsNotCombinational(Functionsi, DepGraph) then

DepGraphCopy ⇐ DepGraph
DepGraphCopyi ⇐ NextSmallestSupportSet(Functionsi, SupportSetsList)
if SupportSetSize(DepGraphCopy) < SupportSetSize(SmallestDepGraph) then

DepGraphCopy ⇐ BreakDown(Functions,DepGraphCopy, SupportSetsList)
if SupportSetSize(DepGraphCopy) < SupportSetSize(SmallestDepGraph) then

SmallestDepGraph ⇐ DepGraphCopy
end if

end if
end if

end for
return SmallestDepGraph

end if

Synthesis(Functions):
SupportSetsList ⇐ ComputeSupportSets(Functions)
SupportSetSize(SmallestDepGraph) ⇐ ∞
for i = 1 to |Functions| do

DepGraphi ⇐ SmallestSupportSet(Functionsi, SupportSetsList)
end for
return BreakDown(Functions,DepGraph, SupportSetsList)

Fig. 23. Pseudocode for our synthesis algorithm. Magnitude symbols (|magnitude|) are used to indicate the
size of a list. The subscript i, when applied to a list, indicates an access to the i-th element of the list. The
dependency graph variables (e.g., DepGraph, DepGraphCopy, and Smallest Depgraph) are lists of support
sets for each function. The routine “SmallestSupportSet” returns the smallest support set for a particular
function from a list of support sets. The routine “NextSmallestSupportSet” returns the next smallest support
set from a list of support sets for a particular function. The routine “SupportSetSize” returns the sum of the
size of all the support sets for a given dependency graph. The routine “DepGraphIsCombinational” performs
the SAT-based analysis described in the previous section; it returns True if the dependency graph is com-
binational. The routine “FunctionIsNotCombinational” returns True if there is a primary input assignment
that causes the given function to evaluate to ⊥.

Given a list of possible support sets, the search begins with the smallest support
set for each function. This is the most compact representation possible. In practice,
the initial solution is usually a very dense ball of dependencies. This initial solution is
almost always not combinational. Generally, as the support sets increase in size, there
are fewer cycles. The algorithm always terminates, because it must eventually hit a
solution containing only the primary inputs in the supports sets for each function. Of
course, in practice it likely finds much better solutions than this and terminates before
this point.

A visual illustration of the synthesis algorithm is shown in Figure 24. In this ex-
ample there are three functions, f0, f1, and f2, and four primary input variables a, b,
c, and d. In the initial dependency graph, there are primary input assignments that
cause all three functions to evaluate ⊥. The algorithm proceeds to search for solutions

19

by trying different support sets for all three functions. In this example, three combi-
national solutions are found. The smallest combinational solution has two cycles and
a total support set size of 8.

������� � �	
����
�	
����

� �� � � �
���� � � �� � � � � �

���� �

���� �

���� �
� �

� �� � � �
� �

� �
� �� � � �
� �

� �

� �� � � �
���� �

� �
� �� � � �

���� �
� �

� � � �� � � �
���� �� �

� �� � � �
���� �� � � �� �� � � �

���� �� � � �
���� ��� ���!" ���� ��� ���!"

���� ��� ���!"

������� ��	
���� �	
����

�	
����
������� �� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.
.
.

. . .

#$%&'() *+,-./012

3456789:

;<=>?@A B
CDEFGHI J

KLMNOP Q RSTUVWXY Z

[\]^_`a bcdefghi j

Fig. 24. An illustration of the synthesis algorithm on an example consisting of 3 functions and 4 primary
input variables. Red arrows indicate cyclic dependencies in the dependency graphs. Some branches are
ommited for clarity, as indicated by “. . .”.

6. IMPLEMENTATION AND RESULTS
We present two sets of synthesis results on standard benchmarks [Benchmarks from
the 2005 Int’l Workshop on Logic Synthesis]. In Table I we report results for cyclic
circuits that were first synthesized with our tool CYCLIFY and then optimized using
the Berkeley tool ABC [Mishchenko et al. 2007]. CYCLIFY is based on an earlier tool,

20

Table I. Results of circuits synthesized with CYCLIFY and then optimized with ABC.

CYCLIFY Results
Benchmark Gates Cyclic Gates Acyclic Delay Cyclic Delay Acyclic Size Ratio Delay Ratio Synthesis Time (s)
bbsse 90 96 5 8 0.94 0.63 8
bw 110 183 9 9 0.6 1 941
clip 113 181 5 9 0.62 0.56 1
cse 128 152 6 9 0.84 0.67 5
duke2 309 301 11 11 1.03 1 178
ex1 205 210 14 8 0.98 1.75 551
ex6 61 116 8 7 0.53 1.14 6
inc 87 115 6 8 0.76 0.75 4
planet 381 419 7 9 0.91 0.78 10667
planet1 377 433 7 9 0.87 0.78 18559
pma 167 161 5 8 1.03 0.63 270
s1 254 339 6 11 0.75 0.55 214
s298 1806 1823 7 14 0.99 0.50 41679
s386 91 102 5 7 0.89 0.71 8
s510 189 199 5 9 0.95 0.56 5
s526 129 135 9 9 0.96 1 25
s526n 130 117 8 10 1.11 0.80 29
s1488 431 500 9 9 0.86 1 2793
sse 87 102 5 8 0.85 0.63 10
styr 344 380 8 10 0.91 0.80 204
table5 686 639 8 13 1.07 0.62 51010

Berkeley SIS [Sentovich et al. 1992], and so uses SOPs and BDDs as the underlying
data structures. Accordingly, the size of the benchmarks that it can tackle is limited.
CYCLIFY uses a similar branch-and-bound algorithm to the one described in Section 5.
(Instead of support set size, it uses literal counts as its cost function.) For Table I, we
selected benchmarks where CYCLIFY produced cyclic solutions. Before reading these
circuits into ABC, dummy primary inputs were introduced at the feedback locations
(implicitly removing the cycles). The circuits were then run through 10 iterations of
compress2, a very aggressive optimization script. The original acyclic versions of the
circuit were also run through 10 iterations of compress2.

The “Gates” columns report the number of AND2 gates in ABC’s AND-inverter
graph (AIG) representation. AIGs are the standard representation at the technology-
independent level for most modern synthesis algorithms, including those based on
SAT. The “Size Ratio” column is calculated as “Gates Cyclic / Gates Acyclic.” The “Syn-
thesis Time” is the time it took CYCLIFY to produce the circuits.

The “Delay” columns report the delay for the cyclic and acyclic circuits. We assume
that nodes in the AIG (corresponding to AND gates) have unit delay; edges in the
AIG, including those with inversions, have zero delay. The “Delay Ratio” column is
calculated as “Delay Cyclic / Delay Acyclic.” For the cyclic circuits, we use the algorithm
presented in [Riedel 2004], based on symbolic event propagation, to compute the delay.
For the acyclic circuits, we compute the delay as the longest path from the primary
outputs to the primary inputs in the AIG. As Table I demonstrates, introducing cyclic
dependencies yields significant reductions in area as well as delay.4

Table II presents synthesis results from SAT-based trials, using support set size as
the cost metric. The algorithm described in Figure 23 was implemented in Berkeley

4Although counterintuitive, cycles can be used to optimize circuits for delay as well as for area. The extra
flexibility of allowing cycles when structuring functional dependencies makes it possible to move logic off of
true critical paths, reducing the delay [Riedel 2004].

21

Table II. Benchmark circuits with cyclic dependencies.

Synthesis Results
Benchmark Num PIs Num POs Orig AIG Size Num Cycles Acyclic SS Size Cyclic SS Size Synthesis Time (s)

amd 14 25 1625 7 69 69 2
apex3 54 50 1655 1 29 27 19
duke2 22 29 577 4 57 55 10

ex6 8 25 88 1 32 32 < 1
gary 15 11 821 1 33 32 1

ABC [Mishchenko et al. 2007]. The SAT solver used was MiniSAT [Sörensson et al.].
All the trials were run on a 32-bit Linux machine with 3.2 GHz AMD Phenom(tm) II
X6 1090T Processor. Only one core was utilized for running the algorithm.

Table II lists benchmarks that were run through the synthesis routine described
in Section 5. The algorithm generated support sets for each of the benchmarks with
primary output functions expressed in terms of other primary output functions and
primary inputs. (For benchmarks that had less than 40 primary outputs, additional
primary outputs were added to intermediate nodes until the benchmark contained
exactly 40. This was done to increase the number of possible dependency graphs.) We
ran the BreakDown procedure described in Section 5 until either 40 combinational
solutions were found, or until a total of 200 dependency graphs were explored and
none of these were deemed to be combinational. Table II reports results for the smallest
cyclic and acyclic representations that were found.

The columns “Num PIs” and “Num POs” list the number of primary inputs and
primary outputs, respectively. The column “Orig AIG Size” lists the number of nodes
in the AIG representation. The column “Cyclic SS Size” lists the sum of the number
of support variables in functions that are part of strongly-connected components in
cyclic solutions. The column “Acyclic SS Size” lists the sum of the number of support
variables in these same functions in the acyclic solutions. The column “Num Cycles”
lists the number of cycles in the corresponding dependency graph. The column “Syn-
thesis Time” lists the time spent searching through the space of dependency graphs
and checking if solutions were combinational. In all trials, the size of all support sets
was limited to 100. For most of the benchmarks, the smallest combinational solution
was found relatively quickly when searching through the space of possible dependency
graphs. As anyone familiar with SAT-based methods might have expected, SAT-based
synthesis is very efficient.

7. DISCUSSION
Early work suggested the possible benefits of cyclic designs, and yet still, combina-
tional circuits are not designed with cycles in practice. As early as 1992, Leon Stok pre-
dicted that EDA tools would not readily be coaxed into accepting cyclic circuits [Stok
1992]. Many of the analysis and verification routines in modern EDA tools balk when
given cyclic designs. (Some check a design compulsively after every transformation
to see if it contains cycles. If it does, the program screeches to a halt.) Significantly,
engines for static timing analysis demand acyclic circuit topologies.

The requisite algorithmic approach is to perform “false-path” aware analysis. Early
formulations based on SOPs and BDDs were never up to the task, but modern SAT-
based algorithms are powerful enough to perform such analysis. In our view, the anal-
ysis engines of modern EDA tools should be made not only “false-path” aware but also
“false-cycle” aware. Introducing cycles provides significant opportunities for optimiza-
tion, both for area and for delay. (Since power is generally correlated with area, we
expect gains in this metric as well.)

22

In related work, we have described SAT-based algorithms for gate-level analysis
and mapping of cyclic circuits [Backes et al. 2008; Backes and Riedel 2011]. This paper
presented a SAT-based method for synthesizing cyclic functional dependencies, at a
technology-independent level. It is an application of a very promising new idea for
synthesizing functional dependencies with Craig interpolation [Lee et al. 2007].

The topic structuring functional dependencies, whether cyclic or acyclic, is one that
has not garnered sufficient attention in the logic synthesis community, in our opinion.
Given the remarkable scalability of the approach, Craig interpolation provides the
opportunity to explore large changes in the structure of functional dependencies, early
in the synthesis process. In applications to date, interpolants have been generated
directly from the proofs of unsatisfiability that are provided by SAT solvers. We have
proposed efficient methods based on incremental SAT solving for modifying resolution
proofs in order to obtain more compact interpolants. This reduces the cost of the logic
that is generated for functional dependencies [Backes and Riedel 2010].

In future work, we will study techniques for manipulating and minimizing the res-
olution proofs obtained through incremental SAT calls, with the aim of effecting large
optimizations in circuit structure through changes in functional dependencies. In our
view, the resolution proofs from SAT solving could be used as an underlying data struc-
ture for performing technology-independent synthesis, as opposed to just the front-end
step.

REFERENCES
AMLA, N., DU, X., KUEHLMANN, A., KURSHAN, R., AND MCMILLAN, K. 2005. An analysis of SAT-based

model checking techniques in an industrial environment. Correct Hardware Design and Verification
Methods, 254–268.

BACKES, J., FETT, B., AND RIEDEL, M. D. 2008. The analysis of cyclic circuits with Boolean satisfiability.
In International Conference on Computer-Aided Design. 143–148.

BACKES, J. AND RIEDEL, M. D. 2010. Reduction of interpolants for logic synthesis. In International Confer-
ence on Computer-Aided Design.

BACKES, J. AND RIEDEL, M. D. 2011. The analysis and mapping of cyclic circuits with boolean satisfiability.
submitted to IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

BENCHMARKS FROM THE 2005 INT’L WORKSHOP ON LOGIC SYNTHESIS. Available at
http://iwls.org/iwls2005/benchmarks.html.

BRAYTON, R. K., HACHTEL, G. D., MCMULLEN, C. T., AND SANGIOVANNI-VINCENTELLI, A. L. 1990.
Multilevel logic synthesis. Proceedings of the IEEE 78, 2, 264–300.

BRYANT, R. E. 1987. Boolean analysis of MOS circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 6, 4, 634–649.

BRZOZOWSKI, J. AND SEGER, C.-J. 1995. Asynchronous Circuits. Springer-Verlag.
EDWARDS, S. A. 2003. Making cyclic circuits acyclic. In Design Automation Conference. 159–162.
EÉN, N. AND SÖRENSSON, N. 2003. An extensible SAT-solver. In SAT, E. Giunchiglia and A. Tacchella, Eds.

Lecture Notes in Computer Science Series, vol. 2919. Springer, 502–518.
KATZ, R. 1992. Contemporary Logic Design. Benjamin/Cummings.
KUKIMOTO, Y. AND BRAYTON, R. 1997. Exact required time analysis via false path detection. In Design

Automation Conference. 220–225.
LARRABEE, T. 1992. Test pattern generation using Boolean satisfiability. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 11, 1, 4–15.
LEE, C.-C., JIANG, J.-H. R., HUANG, C.-Y., AND MISHCHENKO, A. 2007. Scalable exploration of functional

dependency by interpolation and incremental SAT solving. In International Conference on Computer-
Aided Design. 227–233.

MALIK, S. 1994. Analysis of cyclic combinational circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 13, 7, 950–956.

MCMILLAN, K. L. 2003. Interpolation and SAT-based model checking. In International Conference on Com-
puter Aided Verification. 1–13.

MISHCHENKO, A. ET AL. 2007. ABC: A system for sequential synthesis and verification.

23

NEIROUKH, O., EDWARDS, S. A., AND XIAOYU, S. 2008. Transforming cyclic circuits into acyclic equiva-
lents. IEEE Transactions on Computer-Aided Design 27, 17750–1787.

RIEDEL, M. D. 2004. Cyclic combinational circuits. Ph.D. thesis, Caltech.
RIEDEL, M. D. AND BRUCK, J. 2003. The synthesis of cyclic combinational circuits. In Design Automation

Conference. 163–168.
RIVEST, R. L. 1977. The necessity of feedback in minimal monotone combinational circuits. IEEE Transac-

tions on Computers 26, 6, 606–607.
SENTOVICH, E. M., SINGH, K. J., LAVAGNO, L., MOON, C., MURGAI, R., SALDANHA, A., SAVOJ, H.,

STEPHAN, P. R., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. 1992. SIS: A system for se-
quential circuit synthesis. Tech. rep., University of California, Berkeley.

SHIPLE, T. 1996. Formal analysis of synchronous circuits. Ph.D. thesis, U.C. Berkeley.
SÖRENSSON, N. ET AL. Minisat v1.13 – a SAT solver with conflict-clause minimization available at

http://minisat.se/downloads/.
STOK, L. 1992. False loops through resource sharing. In International Conference on Computer-Aided De-

sign. 345–348.
WAKERLY, J. F. 2000. Digital Design: Principles and Practices. Prentice-Hall.
YOELI, M. AND RINON, S. 1964. Application of ternary algebra to the study of static hazards. Journal of

ACM 11, 1, 84–97.

24

