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Abstract

This paper presents a collection of computational modules implemented with chemical reactions: an inverter, an
incrementer, a decrementer, a copier, a comparator, a multiplier, an exponentiator, a raise-to-a-power operation, and a
logarithm in base two. Unlike previous schemes for chemical computation, this method produces designs that are
dependent only on coarse rate categories for the reactions (‘‘fast’’ vs. ‘‘slow’’). Given such categories, the computation is
exact and independent of the specific reaction rates. The designs are validated through stochastic simulations of the
chemical kinetics.
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Introduction

The theory of reaction kinetics underpins our understanding of

biological and chemical systems [1]. It is a simple and elegant

formalism: chemical reactions define rules according to which

reactants form products; each rule fires at a rate that is proportional

to the quantities of the corresponding reactants that are present.

On the computational front, there has been a wealth of research

into efficient methods for simulating chemical reactions, ranging

from ordinary differential equations (ODEs) [2] to stochastic

simulation [3]. On the mathematical front, entirely new branches

of theory have been developed to characterize the dynamics of

chemical reaction networks [4].

Most of this work is from the vantage point of analysis: a set of

chemical reaction exists, designed by nature and perhaps modified

by human engineers; the objective is to understand and

characterize its behavior. Comparatively little work has been

done at a conceptual level in tackling the inverse problem of

synthesis: how can one design a set of chemical reactions that

implement specific behavior?

Of course, chemical engineers, genetic engineers and other

practitioners strive to create novel functionality all the time.

Generally, they begin with existing processes and pathways and

modify these experimentally to achieve the desired new function-

ality [5,6]. In a sense, much of the theoretical work on the

dynamics of chemical reactions also addresses the synthesis

problem by delineating the range of behaviors that are possible.

For instance, theoretical work has shown that fascinating

oscillatory and chaotic behaviors can occur in chemical reaction

networks [7,8].

Perhaps the most profound theoretical observation is that

chemical reaction networks are, in fact, computational processes:

regardless of the complexity of the dynamics or the subtlety of the

timing, such networks transform input quantities of chemical

species into output quantities through simple primitive operations.

The question of the computational power of chemical reactions

has been considered by several authors. Magnasco demonstrated

that chemical reactions can compute anything that digital circuits

can compute [9]. Soloveichik et al. demonstrated that chemical

reactions are Turing Universal, meaning that they can compute

anything that a computer algorithm can compute [10].

Such prior work considered the computational power of

chemical reactions from a deductive point of view. This paper

tackles the problem from an inductive point of view. We present a

constructive method for designing specific computational modules:

an inverter, an incrementer, a decrementer, a copier, a

comparator, a multiplier, an exponentiator, a raise-to-a-power

operation, and a logarithm in base two. This work builds upon our

prior work that described constructs such as ‘‘for’’ and ‘‘while’’

loops [11] and signal processing operations such as filtering [12].

In contrast to previous work, our method produces designs that

are dependent only on coarse rate categories for the reactions (e.g.,

‘‘fast’’ and ‘‘slow’’). It does not matter how fast any ‘‘fast’’ reaction

is relative to another, or how slow any ‘‘slow’’ reaction is relative to

another – only that ‘‘fast’’ reactions are fast relative to ‘‘slow’’

reactions. Specifically, suppose that we design a module that

requires m slow reactions and n fast reactions. Any choice of m

reactions with kinetic rate constants k1, . . . km and n reactions with

kinetic rate constants kmz1, . . . ,kmzn, where kivvkj , for all

i~1, . . . ,m, for all j~mz1, . . . ,mzn, will work.

The result of the computation is rate-independent in the sense that

the formula of what is computed, say a logarithm, does not include

any of the kinetic rate constants. We do not mean to imply that the

rates do not matter. If the separation between ‘‘slow’’ and ‘‘fast’’ is

not sufficiently large, then errors will occur. However, for a

sufficiently large separation, the errors are small.

Indeed, the error that occurs as a function of the separation

between ‘‘fast’’ and ‘‘slow’’ is our main criterion of goodness for

our design. As Tables 1, 2, 3, 4, 5, 6 illustrate, our constructs

perform remarkably well, computing with small errors for rate

separations of 100 or 1,000 and vanishingly small errors for rate

separations of 10,000. We validate our all of our designs through
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stochastic simulations of the chemical kinetics [13] using an open-

source tool called Cain [14]. (Details about Cain can be found in

the section ‘‘Analysis’’.)

Chemical Model
We adopt the model of discrete, stochastic chemical kinetics

[3,15]. Molecular quantities are whole numbers (i.e., non-negative

integers). Reactions fire and alter these quantities by integer

amounts. The reaction rates are proportional to (1) the quantities

of the reacting molecular types; and (2) kinetic rate constants. As

discussed above, all of our designs are formulated in terms of two

coarse kinetic rate constant categories (‘‘fast’’ and ‘‘slow’’).

Consider the reaction

X1?X2zX3: ð1Þ

When this reaction fires, one molecule of X1 is consumed, one of

X2 is produced, and one of X3 is produced. (Accordingly, X1 is

called a reactant and X2 and X3 the products.) Consider what this

reaction accomplishes from a computational standpoint. Suppose

that it fires until all molecules of X1 have been consumed. This

results in quantities of X2 and X3 equal to the original quantity of

X1, and a new quantity of X1 equal to zero:

X2 : ~X1

X3 : ~X1

X1 : ~0

Consider the reaction

X1zX2?X3: ð2Þ

Suppose that it fires until either all molecules of X1 or all molecules

of X2 have been consumed. This results in a quantity of X3 equal

to the lesser of the two original quantities:

X3 : ~min(X1,X2)

X1 : ~X1{min(X1,X2)

X2 : ~X2{min(X1,X2)

We will present constructs different arithmetical and logical

operations in this vein. Each sets the final quantity of some

molecular type as a function of the initial quantities of other types.

Most of our designs consist of either unimolecular or bimolecular

reactions, i.e., reactions with one or two reactants, respectively. A

small subset of the reactions are trimolecular. Mapping these to

chemical substrates might not be feasible, since the kinetics of

reactions with more than two reactants are complex and often

physically unrealistic. For all trimolecular reactions, we suggest the

follow generic scheme for converting them into bimolecular

reactions. (This idea is found in [16] in the context of DNA strand

displacement reactions.) We convert any trimolecular reaction

azbzc?d ð3Þ

into a pair of reactions

azb'e ð4Þ

ezc?d ð5Þ

where e is an new intermediary type. Note that Reaction 4 is a

reversible reaction. We assume that this reaction is fast relative to all

others. Accordingly, if there are non-zero quantities of a and b but

zero of c, the system will ‘‘back-off’’, converting e back into a and b.

Other reactions in the system that use a and b can continue to fire.

Apart from reactions resulting from such trimolecular conver-

sions, we do not use reversible reactions in any of our constructs.

Of course, all chemical reactions are reversible. Implicitly, we

assume that all reverse rates are much slower that the forward

reactions (except for those corresponding to Reaction 4).

Results

Computational Constructs
In this section, we present a collection of constituent constructs

for rate-independent computation: an inverter, an incrementer/

decrementer, a copier, and a comparator. In the next section, we

Table 1. Logical operations via chemical reactions.

Operation Creation Destruction Operation Creation Destruction

a = =b aabzbab azbab a.=b azbab aabzb

aabzb aabzbab

a.b azbab aabzb a,=b aabzb azbab

aabzbab aabzbab

a,b aabzb azbab a! = b aabzb aabzbab

aabzbab azbab

doi:10.1371/journal.pone.0021414.t001

Table 2. Statistical simulation results for ‘‘Multiplier’’ construct.

Trial Rate Separation Trajectories x y z Expected z Error

1 100 100 100 50 4954.35 5000 0.91%

2 100 100 50 100 4893.18 5000 2.14%

3 1000 100 100 50 4991.56 5000 0.17%

4 1000 100 50 100 4995.78 5000 0.08%

5 10000 100 100 50 4998.69 5000 v0.01%

6 10000 100 50 100 4999.14 5000 v0.01%

7 10000 100 10 20 200.04 200 v0.01%

8 10000 100 20 10 200.03 200 v0.01%

doi:10.1371/journal.pone.0021414.t002

Constructs for Chemical Computation
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use some of these constructs to implement a multiplier, a logarithm

operation, an exponentiator, and a raise-to-the-power operation.

A reference of all reactions needed for these constructs can be

found in Supporting Information S1.

An Inverter
We implement an operation that is analogous to that performed

by an inverter (i.e., a NOT gate) in a digital system: given a non-

zero quantity (corresponding to logical ‘‘1’’) we produce a zero

quantity (corresponding to logical ‘‘0’’). Conversely, given a zero

quantity, we produce a non-zero quantity. We accomplish this

with a pair of chemical types: the given type, for example, a, and a

corresponding ‘‘absence indicator’’ type, which will be referred

to as aab. The reactions generating the absence indicator are

shown in reactions 6–8.

1
slow

aab ð6Þ

azaab
fast

a ð7Þ

2aab
fast

aab ð8Þ

Note that when the empty set symbol, 1, is used as a reactant, it

indicates that the reactants are a large or replenishable unreactive

source; when it is used as a product, it indicates that the products

of the reaction are waste.

The first reaction continuously generates molecules of aab, so in

the absence of molecules of a we will have a non-zero quantity of

aab in the system. If there are molecules of a present, then second

reaction quickly consumes any molecules of aab that are generated,

so the quantity of aab will be close to zero. The third reaction

ensures that the quantity aab remains small.

We use this simple construct in many of our computational

modules [12,17]. It is also a fundamental part of all of the

constructs introduced in this paper. In general, it can be used to

synchronize steps. Suppose that we want to perform an operation

similar to the one in reactions 9–10.

a?b ð9Þ

b?½operate on b� ð10Þ

Here the second step is an operation that depends on the quantity

of b. We do not want to start consuming molecules of b until the

full quantity of it is generated from a. We can accomplish this with

an absence indicator aab:

a?b ð11Þ

aabzb?½operate on b� ð12Þ

It is important to note that absence indicators generated by

reactions 6–8 can only be used with ‘‘slow’’ reactions. If they were

used by a ‘‘fast’’ reaction, it is possible that a false positive could be

detected because a ‘‘fast’’ will compete with reaction 7. In

situations where absence indicators need to be consumed by ‘‘fast’’

Table 3. Statistical simulation results for ‘‘Copier’’ construct.

Trial Rate Separation Trajectories cr a b Expected b Error

1 100 500 5 100 102.45 100 2.45%

2 100 500 50 100 104.826 100 4.826%

3 1000 500 5 100 100.312 100 0.312%

4 1000 500 50 100 100.516 100 0.516%

5 10000 500 5 100 100.022 100 0.022%

6 10000 500 50 100 100.034 100 0.034%

7 10000 500 5 5000 4938.39 5000 1.232%

8 10000 500 50 5000 4967.26 5000 0.655%

9 10000 500 200 5000 4796.38 5000 4.072%

10 10000 500 50 2 2 2 v0.01%

doi:10.1371/journal.pone.0021414.t003

Table 4. Statistical Simulation Results from ‘‘Raise to a Power’’ Construct.

Trial Rate Separation Trajectories x p y Expected y Error

1 10000 100 3 9 19734.3 19683 0.26%

2 10000 100 4 8 64884.7 65536 0.99%

3 10000 100 5 4 626.87 625 0.30%

4 10000 100 6 7 279864 279936 0.03%

5 10000 100 9 6 531412 531441 v0.01%

6 10000 100 10 3 999.43 1000 0.06%

doi:10.1371/journal.pone.0021414.t004

Constructs for Chemical Computation
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reactions, we can use an alternate two-step process to produce

them.

1
slow

aab ð13Þ

azaab
fast

a ð14Þ

2aab
fast

aab ð15Þ

aab
slow

a’ab ð16Þ

aza’ab
fast

a ð17Þ

2a’ab
fast

a’ab ð18Þ

In this case, a secondary absence indicator, a’ab is produced from

aab through a ‘‘slow’’ reaction. This allows ‘‘fast’’ reactions to use

a’ab safely because it is buffered through reaction 16.

Increment and Decrement Operations
We describe constructs to implement incrementation and

decrementation. These operations form the basis of more complex

arithmetical operations, such as multiplication. The inputs consist

of two molecular types: g, the ‘‘start signal;’’ and x, the quantity to

be incremented or decremented. We assume that some external

source injects molecules of g. Any quantity can be injected;

regardless, the quantity of x is incremented or decremented by

exactly one, consuming all the molecules g in the process. The

operations proceed as follows:

1) The system waits for the start signal g to be some non-zero

quantity.

2) It transfers the quantity of x to a temporary type x’.

3) It sets g to zero.

4) It transfers all but one molecule of x’ back to x.

5) For a decrement, it removes the last molecule x’.

6) For an increment, it removes the last molecule of x’ and

adds to two molecules to x.

The following reactions implement this scheme. Given mole-

cules of g, a reaction transfers molecules of x to molecules of x’:

xzg
slow

x’zg ð19Þ

The following reaction sets the quantity of g to zero. Using the

absence indicator mechanism described in the preceding section, it

does so only once all molecules of x have been transfered to x’:

gzxab
slow

1 ð20Þ

Reactions of the form of 6–8 are needed to generate xab; we omit

them here. The following reaction transfers all but one molecule of

x’ back to x. It does so by repeatedly selecting pairs of x’ and

turning one molecule of x’ into x. In essence, this is a repeated

integer division by two. Again, using the absence indicator

mechanism, it proceeds only once all molecules of g have been

removed:

g’abz2x’
fast

xzx’zxrx ð21Þ

In reaction 21, we do not directly use an absence indicator for gab,

but instead, we use a secondary absence indicator g’ab, generated

in the method outlined in reactions 13–18.

Table 5. Statistical Simulation Results from ‘‘Exponentiation’’ Construct.

Trial Rate Separation Trajectories x y Expected y Error

1 10000 100 2 4 4 v0.01%

2 10000 100 3 8 8 v0.01%

3 10000 100 6 64.32 64 0.50%

4 10000 100 9 514.3 512 0.45%

5 10000 100 11 2051.48 2048 0.17%

6 10000 100 19 523461 524228 0.15%

doi:10.1371/journal.pone.0021414.t005

Table 6. Statistical Simulation Results from ‘‘Logarithm’’ Construct.

Trial Rate Separation Trajectories x yf Expected yf Error

1 10000 100 2 1 1 v0.01%

2 10000 100 10 3 3 v0.01%

3 10000 100 62 5 5 v0.01%

4 10000 100 83 6 6 v0.01%

5 10000 100 163 7 7 v0.01%

6 10000 100 286 7.99 8 v0.01%

7 10000 100 1165 10 10 v0.01%

doi:10.1371/journal.pone.0021414.t006

Constructs for Chemical Computation

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e21414



Reaction 21 also produces molecules of a supplementary type

xrx. Note that this reaction is in the ‘‘fast’’ category. The new type

xrx is consumed by the reaction:

xrx
slow

1: ð22Þ

Note that this reaction is in the ‘‘slow’’ category. We introduce xrx

because we cannot directly use an absence indicator for x’ to

detect when reaction 21 has completed because x’ is never

completely consumed. Instead, we use xrx to indicate that we are

currently transferring molecules of x’ back to x; it is consumed

when the step completes. Again, reactions of the same form as 6–8

are needed to generate xrxab; we omit them here.

Finally, we include the following reaction to perform a

decrement:

xrxabzx’zg’ab
slow

1 ½Decrement� ð23Þ

Or we include the following reaction to perform an increment:

xrxabzx’zg’ab
slow

2x ½Increment� ð24Þ

With a slight modification of reaction 21, we can also implement

division by 2 with this module:

g’abz2x’
fast

xzxrx ð25Þ

A Copier
In digital computation, one of the most basic operations is

copying a quantity from one register into another. The

programming construct is ‘‘set the value of b to be the value of a’’:

letb : ~a;

To implement an equivalent operation with chemical reactions,

we could use a reaction that simply transfers the quantity of a to b:

a?b ð26Þ

However, this is not ideal because this reaction consumes all the

molecules of a, setting its quantity to zero. We would like a

chemical construct that copies the quantity without altering it. The

following reaction does not work either:

a?azb ð27Þ

It just creates more and more molecules of b in the presence of a.

A more sophisticated construct is needed.

In our construct, we have a ‘‘start signal’’ type g. When an

external source injects molecules of g, the copy operation

proceeds. (In the same way as our increment and decrement

operations, the quantity of g that is injected is irrelevant.) It

produces an output quantity of b equal to the input quantity of a; it

leaves the quantity of a unchanged.

The reactions for the copier construct are as follows. Firstly, in

the presence of g, a reaction transfers the quantity of a to a’:

gza
slow

gza’ ð28Þ

Secondly, after all molecules of a have been transferred to a’, the

system removes all the molecules of g:

gzaab
slow

1 ð29Þ

Here, again, we are using the concept of an absence indicator.

Removing g ensures that a is copied exactly once.

After g has been removed, a reaction transfers the quantity of a’

back to a and also creates this same quantity of b:

gabza’
slow

azb ð30Þ

Alternatively, we can use a slight modification of this reaction to

double the quantity of a:

gabza’
slow

2a ð31Þ

We also generate absence indicators aab and gab by the same

method as reactions 6–8.

We note that, while this construct leaves the quantity of a

unchanged after it has finished executing, it temporarily consumes

molecules a, transferring the quantity of these to a’ before

transferring it back. Accordingly, no other constructs should use a

in the interim.

A Comparator
Using our copier construct, we can create a construct that

compares the quantities of two input types and produces an output

type if one is greater than the other. For example, let us assume

that we want to compare the quantities of two types a and b:

if (awb){

t : ~TRUE

g else{

t : ~FALSE

g

If the quantity of a is greater than the quantity of b, the system

should produce molecules of an output type t; otherwise, it should

not produce any molecules of t.

First, we create temporary copies, ac and bc, of the types that we

wish to compare, a and b, using the copier construct described in

the previous section. (We omit these reactions; they are two

verbatim copies of the copier construct, one with a as an input and

ac as an output, the other with b as an input and bc as an output.)

We split the start signal so that the two copiers are not competing

for it:

g
fast

g1zg2 ð32Þ

Now we compare a and b via their respective copies ac and bc.

To start, we first consume pairs of ac and bc:

aczbc?1 ð33Þ

We assume that this reaction fires to completion. The result is that

there are only molecules of ac left, or only molecules of bc left, or

Constructs for Chemical Computation
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no molecules of ac nor bc left. Molecules of the type that originally

had a larger quantity have persisted. If the quantities were equal,

then both types were annihilated. We use absence indicators acab
and bcab to determine which type was annihilated, produced by the

method shown in reactions 6–8. If a was originally greater than b,

there will now be a presence of ac and an absence of bc. We

produce molecules of type t if this condition is met. We preserve

the quantities of ac and bcab. We can also limit the quantity of t

produced by introducing a fuel type:

fuelzaczbcab
slow

aczbcabzt ð34Þ

For robustness, we also add reactions to destroy t in the case that

the asserted condition is not true:

acabzbczt
slow

acabzbc ð35Þ

acabzbcabzt
slow

acabzbcab ð36Þ

We can readily generalize the construct to all types of logical

comparisons. Table 1 lists these operations and their correspond-

ing reactions.

Complex Arithmetic
Based upon the modules described in the previous section, we

provide examples of how to implement more complex arithmetic:

multiplication, logarithms in base two, exponentiation, and raising

to a power. In order to elucidate the designs, we specify the

sequence of operations for each of these module in pseudo-code.

The pseudo-code operations consist of:

N Assignment, addition, and subtraction operations. The oper-

ands may be constants or variables.

N Decision-making constructs: while and if statements. The

logical test for each of these constructs can be any one of the

six conditions listed in Table 1. In some cases, the if and while

statements will be nested.

A Multiplier. Building upon the constructs in the last section,

we show a construct that multiplies the quantities of two input

types. Multiplication can be implemented via iterative addition.

Consider the following lines of pseudo-code:

While xw0{

z : ~zzy

x : ~x{1

g

The result is that z is equal to x times y. We implement

multiplication chemically using the constructs described in the

previous sections: the line z = z+y is implemented with a copy

operation; the line x= x21 is implemented using a decrement

operation. A third set of reactions handle the looping behavior of

the while statement. The reactions presented here are also listed in

Supporting Information S2.

Firstly, we have reactions that copy the quantity of y to z. We

use ‘‘start signal’’ types g1 and g2 to synchronize iterations; it is

supplied from the controlling reaction 48 below.

g1zy
slow

g1zy’ ð37Þ

g1zyab
slow

1 ð38Þ

g1abzy’
slow

yzz ð39Þ

Secondly, we have reactions that decrement the value of x. We use

g2 as the signal to begin the decrement.

xzg2 {
slow
?x’zg2 ð40Þ

g2zxab
slow

1 ð41Þ

2x’zg’2ab
fast

x’zxzxrx ð42Þ

Figure 1. Pseudo-code to implement raise-to-a-power opera-
tion.
doi:10.1371/journal.pone.0021414.g001

Figure 2. Pseudo-code to implement the exponentiation
operation.
doi:10.1371/journal.pone.0021414.g002

Figure 3. Pseudo-code to implement the logarithm operation.
doi:10.1371/journal.pone.0021414.g003

Constructs for Chemical Computation
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xrx
slow

1 ð43Þ

x’zxrxabzg’2ab
slow

1 ð44Þ

Thirdly, we have a controlling set of reactions to implement the

while statement. This set generates g1 and g2 to begin the next

iteration, preserving the quantity of x:

xzx’abzy’ab
slow

xzgP ð45Þ

gPzx’
fast

x’ ð46Þ

gPzy’
fast

y’ ð47Þ

gP
slow

g1zg2 ð48Þ

This set initiates the next iteration of the loop if such an iteration is

not already in progress and if there are still molecules of x in the

system. The types x’ and y’ are present when we are decrementing

Figure 4. Simulation output of the multiplication construct. x~10, y~10.
doi:10.1371/journal.pone.0021414.g004

Figure 5. Simulation output of the copier construct. a~20, g~10.
doi:10.1371/journal.pone.0021414.g005

Constructs for Chemical Computation
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x or copying y, respectively; thus, they can be used to decide

whether we are currently inside the loop or not. Finally, we

generate the four absence indicators according to the template in

reactions 6–8.

Raise to a Power. As a second complex example, we show

how to implement the operation y~xp. This can be done using

iterative multiplication; as we demonstrated in the previous

section, multiplication can be implemented via iterative addition.

The pseudo-code for the raising-to-a-power operation is shown in

Figure 1. It consists of assignment, addition, subtraction, and

iterative constructs. Note that the assignment operations can be

performed with our ‘‘copier’’ module; the addition and subtraction

operations can be performed with ‘‘increment’’ and ‘‘decrement’’

modules. A pair of nested while constructs, similar to that used for

multiplication, perform the requisite iterative computation. The

complete set of reactions to implement this operation is given in

Supporting Information S3.

Exponentiation. To implement the operation y~2x, we can

use a sequence of operations similar to those that we used for

multiplication. The pseudo-code is shown in Figure 2. The

reactions that implement this pseudo-code are given in Supporting

Information S4.

Logarithm. We demonstrate the computation of a base-2

logarithm. The pseudo-code is shown in Figure 3. A logarithm is

the inverse operation of exponentiation; it makes sense, therefore,

that the pseudo-code for log 2 is more or less the reverse of that for

Figure 6. Simulation output of the decrement construct. x~20.
doi:10.1371/journal.pone.0021414.g006

Figure 7. Simulation output of the comparator (awb) construct. a~100, b~50.
doi:10.1371/journal.pone.0021414.g007

Constructs for Chemical Computation
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exponentiation. The reactions that implement this operation are

given in Supporting Information S5.

Simulation Results
We validated our constructs using stochastic simulation.

Specifically, we performed a time homogeneous simulation using

Gillespie’s ‘‘Direct Method’’ [3] with the software package ‘‘Cain’’

from Caltech [14]. (Details about Cain can bew found in the section

‘‘Analysis’’.) In each case, the simulation was run until the quantities

of all types except the absence indicators converged to a steady state.

We used a rate constant of 1 for the ‘‘slow’’ reactions. We tried rate

constants between two to four orders of magnitude higher for the

‘‘fast’’ reactions. (We refer to the ratio of ‘‘fast’’ to ‘‘slow’’ as the rate

separation.) For each of the graphs below, the initial quantity of each

type is zero, with the exception of the types specified.

Multiplier. Figure 4 shows the output of a single simulated

trajectory for our multiplier. We observe exactly the behavior

that we are looking for: the quantity of y cycles exactly 10 times

as it exchanges with y’ and is copied to z; the quantity of z

grows steadily up to 100; the quantity of x decreases once each

cycle down to 0. Table 1 presents detailed simulation results,

this time tested for accuracy. Errors generally occur if the

system executes too many or too few iterations. As can be seen,

the larger the quantity of x, the more accurate the result, in

relative terms. As expected, the larger the rate separation, the

fewer errors we get.

Figure 8. Simulation output of the comparator (awb) construct. a~50, b~100.
doi:10.1371/journal.pone.0021414.g008

Figure 9. Simulation output of the raise-to-power construct. x~5, p~3, begin~10.
doi:10.1371/journal.pone.0021414.g009
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Copier. Figure 5 shows an average simulated trajectory for

our copier. Again, we observe exactly the behavior we expect: the

quantity of a drops to 0 almost immediately as it turns into a’; this

is followed by the removal of g from the system. When the

quantity of g drops to nearly zero, both a and b rise steadily back

to the original quantity of a. Table 2 shows additional simulation

results from our copier, this time tested for accuracy. The copier

construct appears to be quite robust to errors; however, large rate

separations do not help as much as they do for the multiplier. The

system seems to prefer a larger injection quantity of g, but whether

it is larger or smaller than the initial quantity of a is irrelevant.

Decrementer. Figure 6 shows the output of a single

simulated trajectory of our decrementer. An automatic restart

mechanism, similar to reactions 45–48, was used to produce a

continuous series of decrements. Exactly twenty peaks can be seen

in the graph, including the initial peak on the far-left margin of the

graph. This is exactly the behavior we are looking for – a

decrement by exactly one each cycle.

Comparator. Figures 7 and 8 display simulation results from

our comparator. In Graph 4, t is asserted as we would expect; in

Graph 5, t is not asserted, also as we would expect.

Raise to a Power. Figure 9 shows a simulated trajectory of

our raise-to-a-power construct. As can be observed, after y is

loaded with the initial quantity of x, it is multiplied by x twice.

Each time its value is stored in the temporary type d before being

transferred back. Table 4 shows simulation results for our raise-to-

Figure 10. Simulation output of the exponentiation construct. x~3, y~1.
doi:10.1371/journal.pone.0021414.g010

Figure 11. Simulation output of the logarithm construct. x~16, y~1.
doi:10.1371/journal.pone.0021414.g011
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a-power construct for various values of x and p. In each case, the

initial quantity of begin was set to 10, simulating an injection of

that type.
Exponentiation. Figure 10 shows a simulated trajectory of

our exponentiation construct. We can observe that for every

decrementation of x, y doubles in value, which is the behavior that

we are aiming for. Table 5 shows more simulation results. The

error for this construct is small but appears to grow as x grows.

This is not surprising, given we are performing exponentiation:

small errors will be compounded.
Logarithm. Figure 11 shows a simulated trajectory for our

base-2 logarithm construct. Again, we observe the behavior that

we are expecting; every time we divide x by two, y increases by

one. Table 6 shows more detailed simulation results.

Discussion

This paper presented a collection of specific computational

constructs. More complex operations – multiplication, exponen-

tiation, raising to a power, and logarithms – were built a collection

of robust, primitive operations – absence indicators, incrementing

and decrementing, copying, and comparing. The process by which

we assembled these primitive operations could be readily

generalized. Indeed, we are developing a chemical compiler that

will translate any sequence of operations specified by pseudo-code

into chemical reactions. The compiler will accept general pseudo-

code written in the vein of that shown in Figures 1, 2, 3. It will

allow for assignments, arithmetic operations, ‘‘if’’ statements, and

arbitrarily nested ‘‘while’’ loops.

The novelty and value of the constructs that we have

demonstrated is that they are all rate independent. Here ‘‘rate

independent’’ refers to the fact that, within a broad range of values

for the kinetic constants, the computation does not depend on the

specific values of the constants. Of course, outside of this range, the

accuracy of the computation degrades. For rates within the target

range, our results are remarkably accurate: in nearly all cases the

errors are less than 1%. In many cases, the errors are much less

than 1%. The actual value of the target range will depend on the

chemical substrate used; in simulation, it was found that a ratio of

10,000:1 of ‘‘fast’’ vs. ‘‘slow’’ produced nearly perfect results.

Our contribution is to tackle the problem of synthesizing

computation at a conceptual level, working not with actual

molecular types but rather with abstract types. One might question

whether actual chemical reactions matching our templates can be

found. Certainly, engineering complex new reaction mechanisms

in any experimental domain is formidable task; for in vivo systems,

there are likely to be many experimental constraints on the choice

of reactions [18]. However, we point to recent work on in vitro

computation as a potential application domain for our ideas.

Through a mechanism called DNA strand-displacement, a

group at Caltech has shown that DNA reactions can emulate the

chemical kinetics of nearly any chemical reaction network. They

also provide a compiler that translates abstract chemical reactions

of the sort that we design into specific DNA reactions [16]. Recent

work has demonstrated both the scale of computation that is

possible with DNA-based computing [19], as well as exciting

applications [20]. While conceptual, our work suggest a de novo

approach to the design of biological functions. Potentially this

approach is more general in its applicability than methods based

on appropriating and reusing existing biological modules.

Analysis

All the models described in this paper are contained in an XML

file. This file is available at:

http:==tinyurl:com=rate-indepedent-xml

The file is designed for use with Cain, a biochemical simulator

from Caltech [14]. It contains initial quantities for all types. All

non-zero quantities can be modified as the user desires to simulate

different input values. Within Cain, we suggest Gillespie’s Direct

Method for all simulations.
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2. Érdi P, Tóth J (1989) Mathematical Models of Chemical Reactions: Theory and
Applications of Deterministic and Stochastic Models Manchester University Press.

3. Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry 81: 2340–2361.

4. Strogatz S (1994) Nonlinear Dynamics and Chaos with Applications to Physics,
Biology, Chemistry, and Engineering. Perseus Books.

5. Win MN, Liang J, Smolke CD (2009) Frameworks for programming biological
function through RNA parts and devices. Chemistry & Biology 16: 298–310.

6. Keasling J (2008) Synthetic biology for synthetic chemistry. ACS Chemical
Biology 3: 64–76.

7. Epstein IR, Pojman JA (1998) An Introduction to Nonlinear Chemical
Dynamics: Oscillations, Waves, Patterns, and Chaos Oxford Univ Press.
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Appendix: Module Reference

Absence Indicator

Generates aab in the absence of a, and consumes aab in the presence of a without modifying a.

Reactions

∅
slow
−−−→ aab (1)

a+ aab
fast
−−→ aab (2)

2 aab
fast
−−→ aab (3)

Copier

Adds the value stored in y to z in the presence of g, preserving the initial quantity of y.

Reactions

y + g
slow
−−−→ y

′ + g (4)

g + yab
slow
−−−→ ∅ (5)

gab + y
′ slow
−−−→ y + z (6)

Absence Indicators

∅
slow
−−−→ yab (7)

y + yab
fast
−−→ yab (8)

2 yab
fast
−−→ yab (9)

∅
slow
−−−→ gab (10)

g + gab
fast
−−→ g (11)

2 gab
fast
−−→ gab (12)

Multiply by Two

Takes the value stored in y and doubles it in the presence of g, putting the result back in y.
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Reactions

y + cr
slow
−−−→ y

′ + cr (13)

g + yab
slow
−−−→ ∅ (14)

gab + y
′ slow
−−−→ 2 y (15)

Absence Indicators Same as for “Copier.”

Decrement

Takes the values of x and subtracts 1 from it in the presence of g, putting the result back in x.

Reactions

x+ g
slow
−−−→ x

′ + g (16)

g + xab

slow
−−−→ ∅ (17)

2 x′ + g
′

ab

fast
−−→ x+ x

′ + x
rx (18)

x
rx slow

−−−→ ∅ (19)

x
′ + x

rx

ab + g
′

ab

slow
−−−→ ∅ (20)

Absence Indicators

gab
slow
−−−→ g

′

ab (21)

g + g
′

ab

fast
−−→ g (22)

2 g′ab
fast
−−→ g

′

ab (23)

∅
slow
−−−→ xab (24)

x+ xab

fast
−−→ x (25)

2 xab

fast
−−→ xab (26)

∅
slow
−−−→ x

rx

ab (27)

x
rx + x

rx

ab

fast
−−→ x

rx (28)

2 xrx

ab

fast
−−→ x

rx

ab (29)

∅
slow
−−−→ gab (30)

g + gab
fast
−−→ g (31)

2 gab
fast
−−→ gab (32)

Increment

Takes the values of x and adds 1 to it in the presence of g, putting the result back in x.
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Reactions

x+ g
slow
−−−→ x

′ + g (33)

g + xab

slow
−−−→ ∅ (34)

2 x′ + g
′

ab

fast
−−→ x+ x

′ + x
rx (35)

x
rx slow

−−−→ ∅ (36)

x
′ + x

rx

ab + g
′

ab

slow
−−−→ 2 x (37)

Absence Indicators Same as for “Decrement.”

Divide by Two

Takes the values of x and halves it in the presence of g, putting the result back in x.

Reactions

x+ g
slow
−−−→ x

′ + g (38)

g + xab

slow
−−−→ ∅ (39)

2 x′ + g
′

ab

fast
−−→ x+ x

rx (40)

x
rx slow

−−−→ ∅ (41)

x
′ + x

rx

ab + g
′

ab

slow
−−−→ ∅ (42)

Absence Indicators Same as for “Decrement.”
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Appendix: Multiplication Reactions

System Initialization We use a small set of reactions to implement the iterative loop of the operation.

x+ x
′

ab + y
′

ab

slow
−−−→ x+ g

P (1)

g
P + x

′ fast
−−→ x

′ (2)

g
P + y

′ fast
−−→ y

′ (3)

g
P slow

−−−→ g
1 + g

2 (4)

Copying We use our copier module to implement the line of pseudo-code z = z + y.

g
1 + y

slow
−−−→ g

1 + y
′ (5)

g
1 + yab

slow
−−−→ ∅ (6)

g
1

ab + y
′ slow

−−−→ y + z (7)

Decrement We use our decrement module to implement the line of pseudo-code x = x - 1.

x+ g
2 slow

−−−→ x
′ + g

2 (8)

g
2 + xab

slow
−−−→ ∅ (9)

2 x′ + g
′2

ab

fast
−−→ x

′ + x+ x
rx (10)

x
rx slow

−−−→ ∅ (11)

x
′ + x

rx

ab + g
′2

ab

slow
−−−→ ∅ (12)

Absence Indicators Four absence indicators are needed by this system; they are of the same form as
all others described in this paper.
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Appendix: Raise-to-a-Power Reactions

We present chemical reactions that implement the pseudo-code presented in the text.

System Initialization We assume that an external source injects some quantity of begin at the outset.
This type is immediately is split into two types, g1 and g7, which will be used to copy x to y (for the
line of code y = x) and to decrement p (for the line of code p = p - 1), respectively. This initializations
takes care of the steps before the first while statement.

begin
fast
−−→ g1 + g7 (1)

Copy x to y
[

g1
]

x+ g1
slow
−−−→ xy + g1 (2)

g1 + xab

slow
−−−→ ∅ (3)

xy + g1ab
slow
−−−→ x+ y (4)

Loop Restart Our condition for restarting the main loop is that we still have p present in the system,
and that we are not currently somewhere in the middle of the loop. The chemical type done is produced
at the end of each loop from reactions 63 through 75 below. We also will wait until our post-loop cleanup
in reactions 76 through 78 below is complete. At the start of each loop, we produce an injection of g2

and g7; these initiate the loop.

stab + cycab + g6ab

+stgoab + done+ p
slow
−−−→ goP + done+ p (5)

goP + st
fast
−−→ st (6)

goP + cyc
fast
−−→ cyc (7)

goP + g6
fast
−−→ g6 (8)

goP + stgo
fast
−−→ stgo (9)

goP
slow
−−−→ go+ stgo (10)

go
fast
−−→ g2 + g7 (11)

w + done
fast
−−→ w (12)

xw + done
fast
−−→ xw (13)

cyc+ stgo
slow
−−−→ cyc (14)
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Copy x to w (once each loop)
[

g2
]

First, we take care of w = x.

x+ g2
slow
−−−→ xw + g2 (15)

xab + g2
slow
−−−→ ∅ (16)

g2ab + xw
slow
−−−→ x+ w (17)

Loop-Running Indicator We produce a chemical type cyc whenever we are executing a loop. This
is to ensure that our modules will not inadvertently fire when we do not wish them to do so.

w
slow
−−−→ w + cyc (18)

2 cyc
fast
−−→ cyc (19)

Multiply Loop Start The inner while loop is our multiply operation, handled by the next three
groups of reactions.

w + w′

ab + ydab
slow
−−−→ w + g34P (20)

g34P + w′ fast
−−→ w′ (21)

g34P + yd
fast
−−→ yd (22)

g34P
slow
−−−→ g3 + g4 (23)

Copy y to d (multiply loop)
[

g3
]

y + g3
fast
−−→ yd+ g3 (24)

g3 + yab
slow
−−−→ ∅ (25)

g3ab + yd
slow
−−−→ y + d (26)

Decrement w
[

g4
]

w + g4
fast
−−→ w′ + g4 (27)

g4 + wab

slow
−−−→ ∅ (28)

g4ab
slow
−−−→ g′4ab (29)

2 w′ + g′4ab
fast
−−→ w′ + w + wrx (30)

wrx slow
−−−→ ∅ (31)

w′ + wrx

ab + g′4ab
slow
−−−→ ∅ (32)

2 g′4ab
slow
−−−→ g′4ab (33)

g′4ab + g4
fast
−−→ g4 (34)
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End of Multiply Detection Once the multiplication operation has completed, we produce g5, en-
abling the next step:

wab + w′

ab + g2ab

+xwab + stab + doneab
slow
−−−→ g5P (35)

g5P + w
fast
−−→ w (36)

g5P + w′ fast
−−→ w′ (37)

g5P + g2
fast
−−→ g2 (38)

g5P + xw
fast
−−→ xw (39)

g5P + st
fast
−−→ st (40)

g5P + done
fast
−−→ done (41)

g5P + cyc
slow
−−−→ g5 + cyc (42)

Clear y
[

g5
]

We must take care of the lines y = d and d = 0. First, we clear our previous quantity of
y.

g5 + y
slow
−−−→ g5 (43)

yab + g5
slow
−−−→ ∅ (44)

Inhibit production of g5 We stop production of g5 so that we may preserve the quantity of y that
we are going to receive from d.

yab + ydab
slow
−−−→ stP (45)

stP + y
fast
−−→ y (46)

stP + yd
fast
−−→ yd (47)

stP + g5
slow
−−−→ st+ g5 (48)

Set y to d
[

g6
]

Finally, we transfer d to y, clearing d in the process.

yab + g5ab + ydab
slow
−−−→ g6P (49)

g6P + y
fast
−−→ y (50)

g6P + g5
fast
−−→ g5 (51)

g6P + yd
fast
−−→ yd (52)

g6P + d+ st
slow
−−−→ g6 + d+ st (53)

g6 + d
slow
−−−→ g6 + y (54)
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Decrement p
[

g7
]

The decrement of p is used several in two distinct cases, but we only need one
instance of the module for our system.

p+ g7
fast
−−→ p′ + g7 (55)

g7 + pab
slow
−−−→ ∅ (56)

g7ab
slow
−−−→ g′7ab (57)

2 p′ + g′7ab
fast
−−→ p′ + p+ prx (58)

prx
slow
−−−→ ∅ (59)

p′ + prxab + g′7ab
slow
−−−→ ∅ (60)

2 g′7ab
slow
−−−→ g′7ab (61)

g′7ab + g7
fast
−−→ g7 (62)

End-of-Loop Detection We know that we have finished a loop when all operations within and prior
to the loop have completed.

ydab + dab + goab + g2ab

+xwab + beginab + g1ab

+xyab + g7ab + p′ab
slow
−−−→ doneP (63)

doneP + yd
fast
−−→ yd (64)

doneP + d
fast
−−→ d (65)

doneP + go
fast
−−→ go (66)

doneP + g2
fast
−−→ g2 (67)

doneP + xw
fast
−−→ xw (68)

doneP + begin
fast
−−→ begin (69)

doneP + g1
fast
−−→ g1 (70)

doneP + xy
fast
−−→ xy (71)

doneP + g7
fast
−−→ g7 (72)

doneP + p′
fast
−−→ p′ (73)

doneP
slow
−−−→ done (74)

2 done
fast
−−→ done (75)

Post-Loop Cleanup Finally, we reset the system back to its initial state.

st+ done
fast
−−→ done (76)

g6 + done
fast
−−→ done (77)

cyc+ done
fast
−−→ done (78)
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Absence Indicators

Twenty-five absence indicators are used by the reactions above. They are generated by the method
outlined in the paper and omitted here to save space.
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Appendix: Exponentiation Reactions

We present chemical reactions that implement the pseudo-code presented in the text.

System Initialization As with our multiplication module, we have a small set of reactions to control
the overall timing.

x+ x
′

ab + y
′

ab

slow
−−−→ x+ g

P (1)

g
P + x

′ fast
−−→ x

′ (2)

g
P + y

′ fast
−−→ y

′ (3)

g
P slow

−−−→ g
1 + g

2 (4)

Doubling We use a slight variation of our copier module to implement the line of pseudo-code y = 2

* y.

g
1 + y

slow
−−−→ g

1 + y
′ (5)

g
1 + yab

slow
−−−→ ∅ (6)

g
1

ab + y
′ slow

−−−→ 2 y (7)

Decrement As with our multiplication module, we decrement x once each loop.

x+ g
2 slow

−−−→ x
′ + g

2 (8)

g
2 + xab

slow
−−−→ ∅ (9)

2 x′ + g
′2

ab

fast
−−→ x

′ + x+ x
rx (10)

x
rx slow

−−−→ ∅ (11)

x
′ + x

rx

ab + g
′2

ab

slow
−−−→ ∅ (12)

Absence Indicators Four absence indicators are needed by this system; they are of the same form as
all others described in this paper.
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Appendix: Logarithm Reactions

We present chemical reactions that implement the pseudo-code presented in the text.

System Initialization As with our other modules, we have a small set of reactions to control the
overall timing of our system.

2 x+ x′

ab + y′ab
slow
−−−→ 2 x+ gP (1)

gP + x′ fast
−−→ x′ (2)

gP + y′
fast
−−→ y′ (3)

gP
slow
−−−→ g1 + g2 (4)

Halving We use a slight variation of our decrement module to implement the operation x = x / 2.

x+ g1
slow
−−−→ x′ + g1 (5)

g1 + xab

slow
−−−→ ∅ (6)

2 x′ + g′1ab
fast
−−→ x+ xrx (7)

xrx slow
−−−→ ∅ (8)

x′ + xrx

ab + g′1ab
slow
−−−→ ∅ (9)

(10)

Increment We use our increment module to implement the line y = y + 1. We set y to be 1 initially.

y + g2
slow
−−−→ y′ + g2 (11)

g2 + yab
slow
−−−→ ∅ (12)

2 y′ + g′2ab
fast
−−→ y′ + y + yrx (13)

yrx
slow
−−−→ ∅ (14)

y′ + yrxab + g′2ab
slow
−−−→ 2 y (15)

(16)

Cleanup Once the module has completed, we decrement y by one, storing the result in yf .
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x′

ab + y′ab
slow
−−−→ doneP (17)

doneP + 2 x
fast
−−→ 2 x (18)

doneP + x′ fast
−−→ x′ (19)

doneP + y′
fast
−−→ y′ (20)

doneP
slow
−−−→ done (21)

2 done
fast
−−→ done (22)

done+ 2 y
slow
−−−→ y + yf (23)

Absence Indicators Two special absence indicators are used by the halving and increment modules
above; a total of 13 are needed for the system to function properly. They are of the same form as all
other absence indicators, described in the paper.


