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Abstract— We present new results on the synthesis of globally
stable limit cycles in networks of passive oscillators. These
passive oscillators can be represented as a modified multi-
input-multi-output (MIMO) Lure’ system that is dissipative with
respect to a certain supply rate. We use KS multipliers to
establish the conditions under which the system undergoes
either Hopf bifurcation or a pitchfork bifurcation. Under these
conditions the network exhibits oscillations. Our results are
applicable to networks of non-identical oscillators so long as
the each oscillator is a passive oscillator.

Index Terms— oscillators, Hopf bifurcation, pitchfork bifur-
cation, global stability, Lure’ systems, Zames-Falb multipliers,
KS multipliers

I. INTRODUCTION

This paper is motivated by the problem of synthesizing
controllers for networks of synthetic gene oscillators. Cell-
signaling networks sense and encode dynamic information.
Biochemical oscillators serve as timers of events in periodic
processes (see [1], [2]) and, in particular, activation of signal-
ing proteins can affect cell-fate decisions [3]. Therefore, the
timing and amplitude of these pulses needs to be governed
precisely [4]. Recently the p53-Mdm2 interaction has been
modelled as a negative feedback system in [4] featuring
nonlineaties which can be discerned as memoryless mono-
tone nonlinearities. Such nonlinearities are also observed in
the Escherichia coli based gene oscillator model derived
in [5]. The problem of entraining oscillations and building
arbitrarily large networks of synchronized (or phase-locked)
oscillators has not been considered so far in synthetic biology
even though synchrony across a population of cells has
been well studied and literature on bacterial quorum sensing
abounds (see [6], [7], [8], [9], and [10]). As is apparent from
the ordinary differential equation (ODE) model derived in [4]
and [5], these systems can be posed as interconnected Lure’
systems. In this paper, we establish relevant results for the
relevant Lure’ system based oscillators.

Oscillators are dynamical systems that exhibit stable limit
cycles. Recently, a dissipativity based framework to synthe-
size oscillators, and networks of synchronized oscillators, has
been established in [11]. Following the dissipativity approach
introduced in [12], sufficient conditions for the existence of
limit cycles in a subclass of Lure’ systems have recently
been derived in [11]; the systems of interest being the
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Fig. 1. (i): A modification of SISO Lure’ system to synthesize an oscillator
— Σ is passive whereas φk is related to a monotone memoryless positive
nonlinearity φ through the equation (2). (ii): A modification of MIMO
Lure’ system to synthesize a network of identical oscillators — Ξ is passive
whereas Φk is the repeated diagonal nonlinearity with φk as the repeating
elements.

single-input-single-output (SISO) Lure’ systems and multi-
input-multi-output (MIMO) Lure’ systems featuring repeated
nonlinearities. In [11], an oscillator is viewed as an open
system, i.e., as a dynamical system with an input u and an
output y, and is characterized by a dissipation inequality
between a storage and a supply; the storage reflects the
energy stored in the internal system components whereas the
supply rate governs the exchange of energy with the external
world. An example of the supply rate w, as suggested for
oscillators in [13], is the following:

w(u, y) = uy − d(y) + ak(y), ak(y) ≥ 0, d(y) ≥ 0. (1)

Passivity with respect to the supply rate given by (1)
describes a system that restores energy at low energy, that
is, ak(y)−d(y) > 0 when |y| is small, and dissipates energy
at high energy, that is, ak(y) − d(y) < 0 when |y| is large.
One way to realize the dissipativity with a supply rate of the
form (1) is through the feedback interconnection, shown in
Fig 1(i), of a SISO passive system and a parametric static
nonlinearity φk defined by φk(y) .= φ(y)−ky, where k > 0
and φ is a positive monotone memoryless nonlinearity (see
[11]). In this case, the supply rate w is given by w(u, y) =
uy + ky2 − yφ(y). The parameter k provides a bifurcation
mechanism to create sustained oscillations in the feedback
system [11]. A MIMO version of such systems is shown
in Fig 1(ii), wherein the nonlinearity is repeated. In both
cases, the limit cycle results from either supercritical Hopf



bifurcation, in which case the system is generalization of the
Van der Pol oscillator, or from a slow adaptation added to
a system exhibiting a supercritical pitchfork bifurcation, in
which case the system is a generalization of the Fitzhugh-
Nagumo oscillator (see [11]). We refer to such oscillators as
passive oscillators since these oscillators are dissipative with
respect to the supply rate defined by (1).

II. PRELIMINARIES

Our notation mostly follows [14], [15], [16], and [17],
and is summarized in Table 1; for the discrete time case,
the integration terms are to be appropriately replaced by
summation terms, and the discrete time counterpart of L2

is referred to as `2. The set of all N -dimensional real-valued
vectors is denoted RN . We refer to an operator by using a
capital letter symbol, such as H , whereas a signal is referred
to by using a small letter symbol, such as x. Our short-hand
notation for x(t) = 0 ∀t is x ≡ 0. A function f is said to be
smooth if it is continuously differentiable in Rn and twice
continuously differentiable in a neighborhood of the origin.
A function f is said to be a Lyapunov function for a given
system S if f is positive definite and if, in addition, ḟ is
negative definite along the system trajectories. A function f
is said to be locally quadratic if its Hessian evaluated at the
origin is a positive definite symmetric matrix.

Definition 1: [finite-gain stability] A system
S mapping u ∈ L2 into y ∈ L2 is said to be finite gain
stable if there exists γ ≥ 0 such that ‖y‖ ≤ γ‖u‖ for all
u ∈ L2. The smallest value of such a γ is said to be the
gain of S. �

Definition 2: [sector] We say that H is a sector
[k1, k2] operator if it holds that 〈Hx− k1x,Hx− k2x〉 ≤ 0
for all x ∈ L2. �

Definition 3: [monotone nonlinearity] The class
NM of monotone nonlinearities consists of all memoryless
mappings N : Rn 7→ Rn such that:

1) 〈N(x)−N(y), x− y〉 ≥ 0 for all x, y ∈ L2; and
2) there exists C ∈ R+ s.t. ‖N(x)‖ ≤ C‖x‖ ∀x ∈ L2.

The class N .= {N ∈ NM |N(0) = 0} and the class Nodd
.=

{N ∈ N|N(x) = −N(−x) ∀x}. �
We next note down some notions from the passivity theory

(see [12], [18], and [11]).
Definition 4: [passivity and dissipativity]

Let x denote the state of a given system Ξ. Let u and y
be, respectively, the input and the output of Ξ. Then, Ξ is
said to be dissipative if there exists a scalar storage function
Ω(x) ≥ 0 and a scalar supply rate w(u, y) such that the
dissipation inequality

Ω (x (T ∗))− V (x(0)) ≤
∫ T∗

0

w (u(t), y(t)) dt (2)

is satisfied for all T ∗ ≥ 0 for all state trajectories. If Ξ is
dissipative with supply rate w(u, y) .= uT y, it is said to
be passive. If Ξ is dissipative with supply rate w(u, y) .=
uT y − d(y), where d(y) > 0 ∀ y 6= 0, it is said to be
strictly output passive. If Ξ is dissipative with supply rate

TABLE I
NOTATION

Symbol Meaning
(R+) R Set of all (nonnegative) real numbers.
Z Set of all integers.
(·)′ or (·)T Transpose of a vector or a matrix (·).

〈x, y〉 =

∫ ∞
−∞

yT (t)x(t)dt

‖x‖ =
√
〈x, x〉.

L2 Space of possibly vector valued signals x
for which ‖x‖ <∞.

‖z‖1 =
∫∞
−∞ |z(t)| dt.

x̂ =

∫ ∞
−∞

x(t)e−jωt dt

δ(t) =
{

1 if t = 0,
0 else.

diag(pi) Diagonal matrix with pi as its diagonal elements.
Herm(A) Hermitian of the given matrix A.

w(u, y) .= uT y − e(u), where e(u) > 0 ∀ u 6= 0, it is said
to be strictly input passive. �

Remark 1: If Ξ is linear time-invariant and detectable, its
passivity is equivalent to the positive realness of its transfer
function R(s) (see [18, Section 6.3]). �

Definition 5: [strong passivity] If Ξ is passive
with a storage function which is a locally quadratic smooth
Lyapunov function, it is said to be strongly passive. �

Remark 2: Detectable linear passive systems are strongly
passive. �

III. DETERMINATION OF BIFURCATIONS IN MODIFIED
LURE’ SYSTEMS

A. System Description

The MIMO Lure’ system of interest, SM shown in
Fig. 1(ii), is defined by the following equations:

Ξ : ẋ = f(x) + g(x)v, y = h(x), (3)
v = −Φk(y) + u, (4)

where x, v, y ∈ Rn, and the vector fields f(·), g(·), and
the function h(·) are smooth.

We next describe the constraints on Ξ and Φk. Let Rk(s)
denote the transfer function of the linearization of Ξk at x =
0; we assume that the origin x = 0 is an equilibrium point of
the free system, which corresponds to v = 0, i.e., f(0) = 0.
We also assume that h(0) = 0 and g(0) 6= 0. Further,
we assume that the pair (f, h) is zero-state detectable. In
other words, we assume that every solution x of the free
system ẋ = f(x) that yields y = h(x) ≡ 0 converges
to the zero solution asymptotically. The static nonlinearity
Φk(·) = diag(φk(·)) is a repeated nonlinearity, i.e. Φk(y) =
[φk (y1) . . . φk (yN )]T , where φk(yi)

.= φ(yi)−kyi ∀i with
yi denoting the i-th element of y. The repeating nonlinearity
φ(·) is smooth and belongs to the sector (0,∞). We stipulate
φ′(0) = 0 so that the local slope of φk(·) is determined
by k; the parameter k thus regulates the level of activation
of the nonlinearity near x = 0, and the sector condition



Σ-
1x 1y

N

(i)

(ii)

*−
−M-

1
*xM − 1

~y
Σ +M

*
−M N 1−

+M

1e

2x

2x

2e2y

1e 1y

2e2y 2
~e

1
~e

2
~y

Fig. 2. (i): The feedback system SM — H(s) is a stable and linear
time-invariant transfer function whereas N ∈ N , the class of memoryless,
incrementally positive, norm-bounded nonlinearities. (ii): An equivalent
system obtained using multipliers. If the Zames-Falb multipliers are used,
then M+,M

−1
+ ,M∗−,M

∗−1
− are causal and stable with finite gain.

then imposes φ′′(0) = 0. We refer to this system as SMR.
If the diagonal terms in Φk are not identical but otherwise
satisfy the above properties, we refer to the feedback system
as SM ; note that SMR ⊂ SM . In addition, we stipulate
φ′′′(0) = κ > 0 and lim|s|→∞

φ(s)
s = +∞; as per [19],

this so-called stiffening nonlinearity condition is imposed to
facilitate the global stability analysis via the following result.

Lemma 1: Sk(x) is a global Lyapunov function for SM .
�

Proof: Note that SM with w ≡ 0 is absolutely stable if
it possesses a unique equilibrium x = 0 which is globally
asymptotically stable for any MIMO repeated nonlinearity
Φ(·) = diag {φ(·)} with φ(·) in the sector (0,+∞). Since
Φ(y) is strictly input passive (see [18]), SM is absolutely
stable if Ξk is strongly passive and zero-state detectable (see
[18] and [20]). In that case, the storage function Sk(x) of Ξk
satisfies the dissipation inequality Ṡk ≤ −yTΦ(y). Hence,
Sk(x) as a global Lyapunov function. QED.

Remark 3: Global asymptotic stability of the equilibrium
x = 0 directly follows from the LaSalle invariance principle
(see [20]). Since Sk(x) depends on k, the absolute stability
of SM also depends on k. The effect of k on such stability
analysis has been well discussed in [11]. �

B. Multiplier Theoretic Stability Analysis

We shall first illustrate the use of multiplier theory (see
[16], [17], [21], and [22]) to reduce conservativeness in the
stability analysis of the SM . Briefly speaking, the Zames-
Falb multiplier approach to determining stability of a system
rests on finding a class M of possibly non-causal, linear-
time-invariant multipliers that is positivity preserving for N
in the sense that M ∈ M implies positivity of the operator
M∗N . Additionally, the multipliers M ∈ M are required
to be factorizable as M = M−M+, where M−,M+ have
the following properties: (i) M−,M+ are invertible, and (ii)
M+,M

−1
+ ,M∗−,M

∗−1
− are causal and have finite gain. These

properties ensure that for any such multiplier, stability of
the system shown in Figure 2(i) is equivalent to that of the
system shown in Figure 2(ii). The following result, viz., [21,
Theorem 2], on the stability of this system is well known.

Theorem 1: [21, Zames-Falb]
Suppose there is a mapping M (the multiplier) of L2 into
L2 such that:

1) there are maps M+ and M− of L2 into L2 with the
following properties:

a) M = M−M+;
b) M− and M+ are invertible;
c) M+,M

−1
+ ,M∗− and M∗−1

− are causal and have
finite gains γ(·) (i.e. are bounded);

2) MH and M∗N are positive;
3) either MH is strongly positive and γ(H) is finite or

M∗N is strongly positive and γ(N) is finite.
Then e1, e2 ∈ L2. �

Hence, the positivity preservation results are important in
the stability of SM . A multiplier preserves positivity of a N
nonlinearity if and only if it is in MZF (see [16] and [22]),
which is defined as follows.

Definition 6: [Zames-Falb multipliers] The
classMZF of Zames-Falb multipliers comprises convolution
operators, either continuous-time or discrete-time, such that
the impulse response of an M ∈MZF is of the form

m(·) = g δ(·) + h(·) with h(·) < 0 ∀t, ‖h‖1 < g,

where g, h(·) ∈ R. �
Remark 4: The Zames-Falb multiplier for a MIMO full-

block N nonlinearity is obtained by multiplying the scalar
Zames-Falb multiplier, defined above, by an appropriate
identity matrix. �

We now state [23, Theorem 1] on a set of sufficient
conditions for the absolute stability of the unforced (w ≡ 0)
MIMO Lure feedback system represented in Figure 1(ii).
We assume that the feedback interconnection is ultimately
bounded which means that all solutions enter, in finite time,
a compact and invariant set Ω = Ω(k) (see [18, Definition
5.1]).

Theorem 2: Consider SM . Let w ≡ 0 and let k be fixed
to a particular value. Let Ξ and its linearization be zero-
state detectable, and let φ ∈ NM . Furthermore, suppose
the feedback interconnection of Ξ and Φk(·) is ultimately
bounded. Then, the equilibrium x = 0 is globally asymptot-
ically stable if there exists an M

.= M∗−M+ ∈ MZF such
that Ξ̃k

.= M−∗− ΞkM+ is strongly passive. �
Proof: The proof of Theorem 2 is given in [23] for the

SISO case. The extension of this proof to the MIMO case is
straightforward.

C. Determination of Bifurcations Using Multipliers

We now note down stability properties of SM as the
parameter k increases from 0. We write k & k∗ to denote
a value of the parameter k slightly greater than the critical
bifurcation value k∗, i.e. k ∈

(
k∗, k̄

]
for some k̄ > k∗. Since

Ξ is assumed to be strongly passive and zero-state detectable,
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Fig. 3. (i): Oscillator using a Hopf bifurcation — passivity at the bifurcation
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elements Σ and 1

s
. The static nonlinearity φk regulates the dissipation in

the feedback system, restoring energy when it is too low and dissipating it
when it is too high. (ii): Oscillator using a pitchfork bifurcation — global
bistability of the inner loop combined with a slow adaptation of the outer
loop enables a feedback mechanism for relaxation oscillations characterized
by a rapid switch between two quasi-steady states, i.e., states that would
correspond to stable equilibria in the absence of the outer loop adaptation.

SM with w ≡ 0 is absolutely stable for k = 0. However, a
bifurcation necessarily arises as the value of k is increased
from 0; indeed, the linearization of this feedback system at
x = 0 possesses at least one eigenvalue in the right-half s-
plane when k becomes large enough [24]. The result [11,
Theorem 3] on the existence of bistability and bifurcation
for this system is well known as follows.

Theorem 3: Consider the feedback system SM with w ≡
0. Suppose Ξ and its linearization are zero-state detectable.
Let k∗ ≥ 0 be the smallest value of k at which the
corresponding MIMO transfer function Rk∗(s) has a pole on
the imaginary axis. Suppose there exists an M .= M∗−M+ ∈
MZF such that Ξ̃k∗

.= M−∗− Ξk∗M+ is strongly passive.
Then, the following results hold:

1) If Rk∗(s) has a unique pole on the imaginary axis,
then the system has a supercritical pitchfork bifurcation
such that, for k & k∗, the system is globally bistable
provided the feedback interconnection of Ξ and Φk(·)
is ultimately bounded.

2) If Rk∗(s) has a unique pair of conjugated poles on
the imaginary axis, then the system has a supercritical
Hopf bifurcation such that, for k & k∗, the system has
a unique limit cycle which is globally asymptotically
stable in Rn\Es(0) provided the feedback intercon-
nection of Ξ and Φk(·) is ultimately bounded,

where Es(0) denotes the stable manifold of the unstable
equilibrium x = 0. �

IV. LURE’ SYSTEM BASED OSCILLATORS

Structure of the Lure’ system based oscillators derived
in [11] is shown in Fig. 3. Theorem 3 provides a high-
dimensional generalization of the global bistability in the
inner loop of Figure 3(ii). In order to convert the global

bistability result of Theorem 3 into a mechanism for global
oscillations, we need only add a supervisory negative feed-
back loop through a stable first order filter as shown in
Figure 3(ii) (see [11]). In particular, the following result on
the synthesis of the Lure’ system based oscillators is well
known.

Theorem 4: [Stan-Sepulchre [11, Theorem
4]]
Under the assumptions of Theorem 3, suppose that the
unforced feedback system SM undergoes a supercritical
pitchfork bifurcation at k = k∗. Suppose this system is
augmented by using the following supervisory feedback:

wi =
{
−z if i = i∗;
0 else,

where i∗ is selected such that the linear center manifold
dynamics are observable from yi, and z is given by

τ ż = −z + yi,

for some τ > 0. Suppose the augmented system is
ultimately bounded. Then there exists a positive constant ε̄
such that for any value of k in (k∗, k∗ + ε̄), all solutions
with initial conditions in Rn+1\Es(0) converge to a unique
asymptotically stable limit cycle if τ � (k − k∗)−1. �

Remark 5: If the forward system Ξ is linear, strongly
passive and detectable, then ultimate boundedness is ensured
since the adaptation dynamics τ ż = −z+ yi are passive. �

Definition 7: [passive oscillators]
We say SM is a passive oscillator if it satisfies the following
two conditions:

1) SM satisfies the dissipation inequality

Ṡk ≤
(
k − k∗passive

)
yT y − yTΦ(y) + wT y,

where Sk(x) is the storage function of SM the feed-
back system and k∗passive ≥ 0 is the critical value of
k above which it loses passivity.

2) In the absence of the forcing input w, SM possesses
a global limit cycle, i.e., a stable limit cycle that
attracts all solutions except those belonging to the
stable manifold of the origin.

�
Remark 6: The first condition holds if Ξ is strongly pas-

sive. Theorems 3 and 4 provide sufficient conditions for the
fulfillment of the second condition to be satisfied as well. �

V. INTERCONNECTED PASSIVE OSCILLATORS

The network of interconnected passive oscillators of in-
terest to us comprises N SISO passive oscillators connected
through possibly nonlinear coupling such that (see Fig. 4).
The i-th oscillator has the critical value k∗i,passive Let ũi
denote the input of the i-th oscillator and let yi denote the
output of the i-th oscillator. Suppose ũ = −Φk(y)+u, where
u
.= w − Γ(y) and Γ is the interconnection matrix. Let us

refer to this system as SIN . Since Σi is a passive oscillator,
it satisfies the dissipation inequality

Ṡk,i ≤ (ki − k∗i,passive)y2
i − yiφ(yi) + uiyi.
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The N oscillators define a MIMO system with input u and
output y (see Fig. 4). We refer to this MIMO system as a
network of passive oscillators if it satisfies the dissipation
inequality

Ṡ ≤ yT (K −K∗passive)y − yTΦ(y) + yTu,

where K .= diag(ki) and K∗ .= diag(K −K∗passive). It may
be noted that SIN allows different gains ki in each feedback
loop and a nonlinear interconnection matrix Γ.

Remark 7: Note that the strong passivity and zero-state
detectability assumptions of Theorem 3 hold for the above
system if they hold for each individual oscillator. �

Regarding the bifurcation value k∗ and the dimension of
the center manifold of the network at this bifurcation value,
we have the following result for the case of networks of
identical oscillators with linear and symmetric input-output
coupling.

Proposition 1: Suppose SIN comprises N identical pas-
sive oscillators with linear, symmetric input-output coupling
u = −Γy where Γ = ΓT . Let k0 ∈ R be the smallest
shift such that Γ̃ = Γ̃T = Γ + k0I ≥ 0, where I is the
identity matrix of suitable size, and rank (Γ′) = N − 1.
If each isolated passive oscillator has a center manifold of
dimension two at k = k∗osc, then the network possesses a
center manifold of the same dimension at the bifurcation
value k∗ = k∗osc − k0. �

This result easily generalizes to our network of passive
oscillators as follows.

Theorem 5: Consider SIN with linear input-output cou-
pling u = −Γy. Let K = diag(ki), where ki > 0, be
the diagonal matrix of the smallest shifts needed such that
Γ̃ .= Γ+K ≥ 0 and rank

(
Γ̃
)

= N−1. Furthermore, suppose
it holds for a ki that rank((1 − KΣ)Σ−1 + Γ) = N − 1.
Then if the i-th oscillator has a center manifold of dimension

two at k = k∗i,osc, then a subset of the network possesses a
center manifold of the same dimension at the bifurcation
value k∗ = k∗i,osc − ki. �

Proof: Note that the transfer function of the system is
given as ((1−KΣ)Σ−1 + Γ)−1. The proof then follows by
using a MIMO extension of the arguments used in [11] to
prove Proposition 1. �

We now present the equivalent of Theorem 2 for the
stability analysis of SIN . First, some background notion and
results are presented.

Definition 8: [repeated SISO monotone]
The class of repeated SISO monotone nonlinearities is the
subclass NRS of N with element N ∈ NRS of the form

N(ζ) .= [φ(ζ1) φ(ζ2) . . . φ(ζp)]T ∀ζ ∈ Rp (5)

where φ ∈ N , φ SISO. A shorthand notation for (5) is
N = diag(φ). The class NRS

odd is defined by replacing N in
the definition of NRS by Nodd. �

Definition 9: [similarly ordered, unbiased]
The sequences {x} and {y} of real scalars are said to be
similarly ordered if x(k) < x(l) implies y(k) ≤ y(l) for all
k, l ∈ Z. They are said to be unbiased if x(k)y(k) ≥ 0 ∀k.
They are said to be similarly ordered and symmetric if they
are unbiased and, in addition, the sequences {|x|} and {|y|}
are similarly ordered. �

Definition 10: [associated matrix, kernel]
Given a bounded possibly time varying linear operator M :
`p2 → `p2, z = My is given as

z(k) .=
∞∑

l=−∞

mk,l y(l) ∀k ∈ Z,

where mk,l ∈ Rp×p ∀k, l; the associated matrix M̃ of M
is defined as

M̃
.=



. . . . . . . . . . . . . . . . . . . . .

. . . m−1,−1 m−1,0 m−1,1 m−1,2
. . . . . .

. . . m0,−1 m0,0 m0,1 m0,2
. . . . . .

. . . m1,−1 m1,0 m1,1 m1,2 m1,3
. . .

. . . m2,−1 m2,0 m2,1 m2,2 m2,3
. . .

. . . . . . . . . . . . . . . . . . . . .


.

The symbol mij , i, j ∈ Z denotes the (i, j)-th scalar element
of the matrix M̃ ; for example, m00 denotes the upper left
entry in the p × p matrix m0,0 and m−p,0 denotes the
upper left entry in the p × p matrix m−1,0. If mk,l =
mk+n,l+n ∀k, l, n ∈ Z then M̃ is said to be block Toeplitz
and M is said to be a time invariant operator or, alternatively,
a convolution operator. For a bounded possibly time varying
continuous time linear operator M : L2 → L2

z(t) =
∫ ∞
−∞

m(t, τ)y(τ) dτ ∀t ∈ R.



the kernel m(t, τ) ∈ Rp×p is the counterpart of mk,l. In the
continuous time case, M is called a time invariant operator
or, alternatively, a convolution operator if m(t, τ) = m(t+
ν, τ + ν) ∀t, τ, ν ∈ R. For a convolution operator M , a
shorthand notation for m(t, τ) and mi,j is m(t − τ) and
m(i − j), respectively with m(t) and m(k) denoting the
respective impulse response. �

Definition 11: [hyperdominance, dominance]
An operator M : `2 → `2 is said to be doubly dominant if
the elements mij of its associated matrix have the following
properties.

mii ≥
∞∑

j=−∞,j 6=i

|mij |, mii ≥
∞∑

j=−∞,j 6=i

|mji| ∀i.

If, in addition, it also holds that mij ≤ 0, ∀i 6= j, then
M said to be doubly hyperdominant. For an operator M :
L2 → L2, these notions are defined in terms of its kernel in
an analogous manner with integrals suitably replacing sums.
�

Lemma 2: [16, Willems]
Let M : `2 → `2 be a bounded linear operator.
Then, 〈x,My〉 is nonnegative for all similarly ordered un-
biased (similarly ordered symmetric unbiased) sequences
{x}, {y} ∈ `2 if and only if M is doubly hyperdominant
(doubly dominant). �

Definition 12: [multipliers]
MRS

odd denotes the class of MIMO convolution operators,
either continuous or discrete, such that the impulse response
of an M ∈MRS

odd is of the form

m = g δ − h,

where g, h(·) ∈ Rp×p satisfy

gii ≥
n∑

i=1,i6=j

|gij |+
n∑
i=1

‖hij‖1 ∀i = 1, 2, . . . , n,

gii ≥
n∑

j=1,j 6=i

|gij |+
n∑
j=1

‖hij‖1 ∀i = 1, 2, . . . , n.

By further stipulating gij ≤ 0 ∀i 6= j, hij(·) ≥ 0 ∀i, j, the
subclass MRS is obtained. �

Theorem 6: [25, Kulkarni-Safonov]
A bounded linear operator M mapping `p2 into `p2 [or L2

into L2] preserves positivity of every N ∈ NRS (N ∈
NRS
odd) if and only if its associated matrix [kernel] is doubly

hyperdominant (doubly dominant). Furthermore, a bounded
convolution operator M mapping L2 into L2, or mapping `p2
into `p2, preserves positivity of every N ∈ NRS (N ∈ NRS

odd)
if and only if M ∈MRS (M ∈MRS

odd). �
Now, our result on the equivalent of Theorem 2 for SIN

is as follows.
Theorem 7: Consider the feedback system SIN of identi-

cal oscillators interconnected with linear coupling with w ≡
0. Suppose Ξ and its linearization are zero-state detectable.
Suppose there exists an M

.= M∗−M+ ∈ MRS such that
Ξ̃k∗

.= M−∗− Ξk∗M+ is strongly passive. Let k∗ ≥ 0 be

the smallest value of k at which the corresponding MIMO
transfer function Rk∗(s) has a pole on the imaginary axis.
Then, the following results hold:

1) If Rk∗(s) has a unique pole on the imaginary axis,
then the system has a supercritical pitchfork bifurcation
such that, for k & k∗, the system is globally bistable
provided that the feedback interconnection of Ξ and
Φk(·) is ultimately bounded.

2) If Rk∗(s) has a unique pair of conjugated poles on
the imaginary axis, then the system has a supercritical
Hopf bifurcation such that, for k & k∗, the system has
a unique limit cycle which is globally asymptotically
stable in Rn\Es(0) provided the feedback intercon-
nection of Ξ and Φk(·) is ultimately bounded,

where Es(0) denotes the stable manifold of the unstable
equilibrium x = 0. �

Theorem 8: Consider the feedback system SIN of pos-
sibly non-identical oscillators interconnected with possibly
nonlinear coupling with w ≡ 0. Suppose Ξ and its lin-
earization are zero-state detectable. Suppose there exists an
M

.= M∗−M+ ∈ MRS such that Ξ̃k∗
.= M−∗− Ξk∗M+

is strongly passive. Let K = diag(ki), where ki > 0, be
the diagonal matrix of the smallest shifts needed such that
Γ̃ .= Γ+K ≥ 0 and rank

(
Γ̃
)

= N−1. Furthermore, suppose
it holds for a ki that rank((1−KΣ)Σ−1+Γ) = N−1. Then,
the following results hold:

1) If the linearization of Ξ at k = k∗ has a unique pole
on the imaginary axis, then a subset of the system
has a supercritical pitchfork bifurcation such that, for
k & k∗, a subset of the system is globally bistable
provided the feedback interconnection of MΞ and
Φk(·) is ultimately bounded.

2) If the linearization of Ξ at k = k∗ has a unique pair
of complex conjugate poles on the imaginary axis,
then a subset of the system has a supercritical Hopf
bifurcation such that, for k & k∗, it has a unique
limit cycle which is globally asymptotically stable in
Rn\Es(0) provided the feedback interconnection of
MΞ and Φk(·) is ultimately bounded.

where Es(0) denotes the stable manifold of the unstable
equilibrium x = 0. �

VI. CONCLUSION

We have presented new results on the synthesis of globally
stable limit cycles in the networks of passive oscillators.
These limit cycles are realized by making use of either
Hopf bifurcation or pitchfork bifurcation. The network of
interest is a modified Lure’ system that is decomposable
as an interconnection of a passive system and a repeated
monotone nonlinearity. We have built on the results derived
in [24] for identical passive oscillators by making use of the
KS multipliers derived in [25] for repeated monotone nonlin-
earities. Specifically, given a network of passive oscillators,
we establish the conditions under which either all oscillators
or a subset of those will exhibit globally stable limit cycles.
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