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Abstract—This paper presents a methodology for implement-
ing digital logic with molecular reactions based on a bistable
mechanism for representing bits. The value of a bit is not deter-
mined by the concentration of a single molecular type; rather, it is
the comparison of the concentrations of two complementary types
that determines if the bit is “0” or “1”. This mechanism is robust:
any small perturbation or leakage in the concentrations quickly
gets cleared out and the signal value is not affected. Based on this
representation for bits, a constituent set of logical components
are implemented. These include combinational components –
AND, OR, NOR, and XOR – as well as sequential components
– D latches and D flip-flops. Using these components, three
full-fledged design examples are given: a square-root unit, a
binary adder and a linear feedback shift register. DNA-based
computation via strand displacement is the target experimental
chassis. The designs are validated through simulations of the
chemical kinetics. The simulations show that the molecular
systems compute digital functions accurately and robustly.

I. INTRODUCTION

Just as electronic systems implement computation in terms
of voltage (energy per unit charge), molecular systems com-
pute in terms of chemical concentrations (molecules per unit
volume). Indeed, the field of molecular computation strives
for molecular implementations of computational processes –
that is to say processes that transform input concentrations
of molecular types into output concentrations of molecular
types [1], [2], [3], [4], [5], [6].

The impetus of the field is not computation per se; chemical
systems will never be useful for number crunching. Rather
the field aims for the design of custom, embedded biological
“sensors” and “controllers” – viruses and bacteria that are
engineered to perform useful tasks in situ, such as cancer
detection and drug therapy. Exciting work in this vein in-
cludes [7], [8], [9], [10].

There have been several attempts to apply concepts from
digital circuit theory to biological engineering. The view that
the presence of a type of molecule, such as a protein, corre-
sponds to logical one and its absence corresponds to logical
zero, is contained in much of this prior work, either explicitly
or implicitly. Numerous types of genetic gates have been
proposed [11], [12], [13], [14], [15], [16], [17], [18]. Also,
dating back to seminal work by Kauffman, gene networks are
often modeled as directed graphs in which there is an arrow
from one node to another if and only if there is a causal link
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between the corresponding genes; the node itself is viewed
as a Boolean function of its inputs; its state is either “on” or
“off” depending on the level of gene expression [19].

Prior work has established general mechanisms for molec-
ular computation [20], [21], [22] as well as specific compu-
tational constructs: logical operations such as copying, com-
paring, incrementing/decrementing as well as programming
constructs such as “for” and “while” loops [23]; arithmetic
operations such as multiplication, exponentiation and loga-
rithms [24], [25]; and signal processing operations such as
filtering [26].

In this paper, we present a novel methodology for im-
plementing digital logic with molecular reactions based on
a bistable mechanism for representing bits. The notion of
bistability is not new [27]. We apply it in a novel way,
with a form of “dual-rail” encoding: the value of a bit is
not determined by the concentration of a single molecular
type. Rather, it is the comparison of the concentrations of two
complementary types that determines if the bit is “0” or “1”.
This mechanism is robust: any small amount of perturbation or
leakage in the concentrations quickly gets cleared out and the
signal value is not affected. Based on this bit representation,
we present designs for combinational components – AND,
OR, NOR, and XOR – as well as for sequential components
– D latches and D flip-flops. We illustrate the use of these
components with three full-fledged design examples: a square-
root unit, a binary adder, and a linear feedback shift register
(LFSR) [28]. We validate the designs through simulations of
the molecular kinetics, based on ordinary differential equa-
tions. The simulations results show that our gates, our square-
root unit, our adder, and our LFSR produce nearly perfect
digital signal values.

The paper is organized as follows. In Section II, we present
some general background information on the computational
model and simulation techniques for molecular systems. In
Section III, we describe the bistable mechanism for represent-
ing binary bits. In Section IV, we discuss the implementation
of logic gates. In Section V, we discuss the implementation
of D latches and D flip-flops. In Section VI, we present
the examples of a binary adder and an LFSR. Finally, in
Section VII, we provide concluding remarks.



II. COMPUTATIONAL MODEL AND BIOCHEMICAL
BACKGROUND

A. Technology-Independent Model
One of the great successes of integrated circuit design

has been in abstracting and scaling the design problem. The
physical behavior of transistors is understood in terms of
differential equations – say, with models found in tools such
as SPICE [29]. However, the design of circuits occurs at more
abstract levels – in terms of switches, gates, and modules.
Many analogous levels of abstraction exist for biological
systems. These range from molecular dynamics, to protein net-
works, to genetic regulatory networks, to signaling pathways,
to complete cellular systems, to multicellular organisms.

We will discuss a particular level of abstraction, analogous
in some ways to transistor netlists: molecular reactions. We
will examine the abstraction from a design perspective: how
can we synthesize molecular reactions that produce specific
output concentrations of molecules as a function of input
concentrations?

A molecular system consists of a set of chemical reactions,
each specifying a rule for how types of molecules combine.
For instance,

X1 +X2
k−→ X3, (1)

specifies that one molecule of X1 combines with one molecule
of X2 to produce one molecule of X3. The value k is called the
rate constant. We model the molecular dynamics in terms of
mass-action kinetics [30], [31]: reaction rates are proportional
to (1) the concentrations of the participating molecular types;
and (2) the rate constant. Accordingly, for the reaction above,
the rate of change in the concentrations of X1, X2 and X3 is

−d[X1]

dt
= −d[X2]

dt
=
d[X3]

dt
= k[X1][X2], (2)

(here [·] denotes concentration). Most prior schemes for molec-
ular computation depend on specific values of the rate con-
stants, which limits the applicability since the rate constants
are not constant at all; they depend on factors such as cell
volume and temperature. The results of the computation are
not robust.

We aim for robust constructs: in our methodology we
require only a coarse value for the kinetic constants. Given
the coarse value for these constants, the computation is exact.
It does not matter how fast the reactions are – only that all
reactions fire at relatively similar rates. Accordingly, we will
generally omit the kinetic constants from the specification of
our reactions.

B. Technology Mapping
Given a specification of an abstract molecular reaction

network that implements the requisite computation, the next
step is to map it to specific molecular reactions. We describe
a mapping to DNA strand-displacement reactions. The reader
is referred to [5] for a detailed discussion of this mechanism.
Here we illustrate with an example.

Consider the DNA strand-displacement reaction shown in
Figure 1. Here a single strand of DNA X1 replaces the top
strand of a double-strand DNA Li; this generates a double-
strand DNA Hj and a single-strand Bj . (This reaction is
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Fig. 1: An example of DNA strand displacement.

reversible.) The top strand of Hj can be replaced by single-
strand X2, generating a single-strand Oj . Then Oi replaces
two of the top strands of the double-strand Ti, releasing X3.
(Note that the strands Li, Gi and Ti are “fuel” sources. It is
assumed that there is an abundant source of these; the con-
centrations do not matter.) The signals are the concentrations
of X1, X2 and X3. This sequence of strand displacements
implements the abstract chemical reaction:

X1 +X2
k−→ X3,

In [5] it is demonstrated that any system consisting of
bimolecular reactions i.e., reactions with two reactants each,
can be mapped to such DNA strand-displacement reactions.
All of our designs consist of bimolecular reactions.

C. Simulation & Validation
Given a set of reactions at abstract molecular level, we

first map it to DNA strand-displacement reactions of the form
shown Figure 1. We then generate system kinetic equations
of the mapped DNA system and obtain the transient solution.
Such simulations of the chemical kinetics provide a reasonably
accurate prediction of the actual in vitro behavior [6].

III. BIT REPRESENTATION

The most straightforward interpretation of binary values in
the context of molecular computation is to assign a threshold
to the concentration of a designated molecular type [32].
When the concentration exceeds a threshold level, the bit is
considered a logical 1; otherwise it is consider a logical 0. Al-
though such a representation is conceptually simple, it requires
external mechanisms for comparing the concentration of the
designated molecular type with the threshold. Furthermore, it
suffers from signal degradation over time: unwanted residue
accumulates every time a signal is changed, unless there is
some mechanism to clear the signal.

To mitigate these issues, we use a complementary represen-
tation (reminiscent of a “dual-rail” encoding). For a single bit
X , we use two molecular types, X0 and X1. The presence of
X0 indicates that X is set to 0; the presence of X1 indicates
that X is set to 1. Clearly, X0 and X1 should not be present
at the same time or else the value of X would be ambiguous.
We use following set of reactions to ensure that this does not
happen:

X0 +X1 −→ SX

SX +X0 −→ 3X0

SX +X1 −→ 3X1.
(3)



In Reactions 3, a molecule of X0 combines with a molecule
of X1 to produce a molecule of SX . This molecule of SX then
combines with a molecule of X0 or one of X1, depending
on which it meets first. The choice is competitive: both X0

and X1 are trying to increase their concentration via the
intermediary type SX ; whichever has a higher concentration
wins. The concentration of the loser effectively drops to zero.
So this mechanism clears out the leakage of molecular types
that would otherwise occur when bits are set.

To further elucidate the behavior of Reactions 3, consider
their kinetic equations:

d[SX ]

dt
= k[X0][X1]− k[SX ][X0]− k[SX ][X1]

d[X0]

dt
= −k[X0][X1] + 2k[SX ][X0] (4)

d[X1]

dt
= −k[X0][X1] + 2k[SX ][X1].

Suppose the combined initial concentration of X0 and X1

is C and that the initial concentrations of SX is 0. For a
steady-state solution, let d[SX ]

dt = d[X0]
dt = d[X1]

dt = 0. There
are, in fact, three steady-state solutions: {X0 = X1 = 2C

5 },
{X0 = 0, X1 = C}, and {X0 = C,X1 = 0}. The first is
unstable. It is a saddle point: any small perturbation that makes
the concentrations of X0 and X1 unequal leads to one of the
other two solutions. These solutions are both stable. We can
map Reactions 3 to DNA strand displacements. Kinetics of
the DNA system are similar. This bistability forms the basis
of our representation of a bit.

IV. IMPLEMENTING LOGIC GATES

Given this robust representation of binary bits, we demon-
strate how to implement logic gates with molecular reactions.
We only consider two-input gates; gates with more than two
inputs can be easily implemented by cascading two-input
gates.

Suppose the inputs of a gate are X and Y , and the output
is Z. These signals are represented by the concentrations of
X0/X1, Y0/Y1, and Z0/Z1, respectively. Each one of X , Y ,
and Z is regulated by its own version of the bit operation
reactions:

X0 +X1 −→ SX

SX +X0 −→ 3X0

SX +X1 −→ 3X1

Y0 + Y1 −→ SY

SY + Y0 −→ 3Y0
SY + Y1 −→ 3Y1
Z0 + Z1 −→ SZ

SZ + Z0 −→ 3Z0

SZ + Z1 −→ 3Z1.

(5)

For each of the four entries in the truth table for the gate,
if the value of Z is 1, then molecules of Z0, if any, should
be transferred to Z1. Similarly, if the value of Z is 0, then
molecules of Z1, if any, should be transferred to Z0.

A. AND Gate and OR Gate

Let us first consider an AND gate. By definition, either
X = 0 or Y = 0 sets Z to 0, which means that when either

X0 or Y0 is present, Z0 should be generated and Z1 should
be cleared out. This is implemented by the reactions

X0 + Z1 −→ X0 + Z0

Y0 + Z1 −→ Y0 + Z0.
(6)

Here, X0 and Y0 transfer Z1 to Z0 but keep their own
concentrations unchanged. Z is set to 0 if it has not already
been.
Z should be set to 1 only when both X = 1 and Y = 1.

This is implemented by the reactions

X1 + Y1 −→ X1 + Y1 + Z ′1
2Z ′1 −→ ∅

Z ′1 + Z0 −→ Z1.
(7)

In the first reaction, X1 combines with Y1 to generate Z ′1, an
indicator that Z should be set to 1. The concentrations of X1

and Y1 do not change1. Z ′1 is transferred to an external sink,
denoted by ∅, in the second reaction. (This could be a waste
type whose concentration we do not track.) When molecules
of both X1 and Y1 are present, these reactions maintain the
concentration of Z ′1 at an equilibrium level. When one of X1

and Y1 is not present, Z ′1 gets cleared out. In the last reaction,
Z ′1 transfers Z0 to Z1. Taken together, Reactions 5, 6 and 7
implement an AND gate.

To simulate the AND gate, we map Reactions 5, 6 and
7 to DNA strand-displacement reactions and generate their
corresponding ODEs. The results are shown in Figure 2A. The
initial concentrations were set as follows: [Z1] = [Z ′1] = 0,
and [SX ] = [SY ] = [SZ ] = 0. Note that Z0 can be set to
any nonzero value C; we used C = 10−8mol/L = 10nM
in this simulation. We sweep the range of initial values of
[X1] and [Y1] from 0 to C; similarly, we sweep [X0] and
[Y0] from C to 0. The resulting steady-state values of [Z1] for
each input combination are recorded. The figure demonstrates
that the AND gate works perfectly: when both [X1] >

C
2 and

[Y1] >
C
2 , [Z1] = C; otherwise [Z1] = 0.

The reactions for the OR gate are similar to those for the
AND gate. Either X = 1 or Y = 1 sets Z to 1. This entails
having both X1 and Y1 transfer Z0 to Z1:

X1 + Z0 −→ X1 + Z1

Y1 + Z0 −→ Y1 + Z1.
(8)

When both X = 0 and Y = 0, molecules of Z1 are transferred
to Z0:

X0 + Y0 −→ X0 + Y0 + Z ′0
2Z ′0 −→ ∅

Z ′0 + Z1 −→ Z0.
(9)

Simulation results for the OR gate are shown in Figure 2B.
The simulation method and initial concentrations are the same
as those used for the AND gate.

NAND and NOR gates can be implemented by effecting
the transfers between Z0 and Z1 in the opposite directions of
those of the AND and OR gates. We illustrate for the NOR
gate only. Together with Reactions 5, the following reactions

1This reaction looks against molecular conservation. In DNA implementa-
tion, however, Z′

1 is generated from external fuels.
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Fig. 2: Simulation results of the kinetic equations for the logic gates. Concentration values are normalized.

implement a NOR gate:

X1 + Z1 −→ X1 + Z0

Y1 + Z1 −→ Y1 + Z0.
X0 + Y0 −→ X0 + Y0 + Z ′1

2Z ′1 −→ ∅
Z ′1 + Z0 −→ Z1.

(10)

Simulation results for the NOR gate are shown in Figure 2C.

B. XOR gate

We could, of course, implement an exclusive-OR (XOR)
gate with say NAND gates or NOR gates. Instead, we present a
direct implementation. For an XOR gate, Z = 1 when X 6= Y .
Therefore, molecules of Z0 are transferred to Z1 when both
X0 and Y1 are present, or when both X1 and Y0 are present:

X0 + Y1 −→ X0 + Y1 + Z ′1
X1 + Y0 −→ X1 + Y0 + Z ′1

2Z ′1 −→ ∅
Z ′1 + Z0 −→ Z1.

(11)

Similarly, when both X0 and Y0 are present, or when both X1

and Y1 are present, molecules of Z1 are transferred to Z0:

X0 + Y0 −→ X0 + Y0 + Z ′0
X1 + Y1 −→ X1 + Y1 + Z ′0

2Z ′0 −→ ∅
Z ′0 + Z1 −→ Z0.

(12)

Simulation results for the XOR gate are shown in Figure 2D.

C. Kinetic Analysis

Reactions 5 strive to retain the previous value of Z. How-
ever, when the inputs of a gate change and molecules of one
of Z0 or Z1 are transferred to the other, the “force” to keep the
previous value set by Reactions 5 is overcome by the “force”
changing it.

Consider an AND gate with X = 0, Y = 1 and Z = 1.
Initially, [X0] = [Y1] = [Z1] = C, and the concentrations of
other types are all 0. As long as [Z1] > [Z0], Reactions 5
transfer molecules of Z0 to Z1 to preserve Z = 1. They
compete with Reactions 6, which set Z = 0. Active reactions
related to Z0 are:

Z0 + Z1 −→ SZ

SZ + Z0 −→ 3Z0

X0 + Z1 −→ X0 + Z0.
(13)

The rate of change of [Z0] is

d[Z0]

dt
= −k[Z0][Z1] + 2k[SZ ][Z0] + k[X0][Z1] (14)

= −k[Z0][Z1] + 2k[SZ ][Z0] + kC[Z1]

Since [Z0] ≤ C, d[Z0]
dt ≥ 0. d[Z0]

dt = 0 only when [Z0] = C.
This means Z1 will be continuously transferred to Z0, until
[Z0] reaches C. The “force” of an input bit changing an
output bit overcomes the “force” preserving the previous value.
Similar reasoning can be applied to the other cases of the AND
gate, and for the other gates.

V. IMPLEMENTING D FLIP-FLOP

In this section, we discuss the implementation of the key
block for sequential logic, namely a D flip-flop. We start by
implementing a D latch and then we implement a D flip-flip
using a master-slave configuration of D latches.

A. D Latch
A D latch has two inputs, the latch input D and an enable

signal, and one output Q, as shown in Figure 3A. When the
enable signal is 1, the latch output is equal to the latch input.
When the enable signal is 0, the latch holds the last input value
that it saw before the enable signal was still 1. We could, of
course, implement such a D latch with cross-coupled NOR
gates. Instead, we present a direct implementation based upon
our bistable construct for binary values. Indeed, Reactions 3
provide a state-locking mechanism. Based on those reactions,
we introduce an enabling signal CLK such that value of the
input is transferred to output only when CLK = 1. When
CLK = 0, the state-locking mechanism holds the output
value. Similar to other bits, CLK is represented by molecular
types CLK0 and CLK1.

The D latch is implemented by following reactions:

CLK1 +D0 −→ CLK1 +D0 +Q′0
CLK1 +D1 −→ CLK1 +D1 +Q′1

2Q′0 −→ ∅
2Q′1 −→ ∅

Q′0 +Q1 −→ Q0

Q′1 +Q0 −→ Q1.

(15)

With enabling signal CLK1, the first two reactions generate
Q′0 or Q′1, with presence of input signals D0 or D1, respec-
tively. The next two reactions ensure that molecules of Q′0
(Q′1) do not accumulate when there are no molecules of D0

(D1) present. Finally, the last two reactions set Q to 0 or to
1 if Q′0 is present or if Q′1 is present, respectively.
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Fig. 3: Block diagrams and transient simulation results of D latch and D flip-flop. Signals are color coded.

Transient simulation results for DNA strand-displacement
reactions of the D latch are shown in Figure 3B. The initial
conditions for the system are set to [CLK0] = [D0] = [Q0] =
C, [CLK1] = [D1] = [Q1] = 0, [Q′0] = [Q′1] = 0 and
[SQ] = 0. Q follows D only when CLK1 is present.

B. D Flip-Flop

Unlike a latch, a flip-flop reacts to changes in its enabling
signal. If the enabling signal is clock, then the flip-flop only
grabs its input on the rising edge of the clock, that is to say
when the clock signal changes from 0 to 1. We implement
a D flip-flop with a master-slave configuration of D latches,
as shown in Figure 3C. In this configuration, the signal D
goes through two D latches in series. When CLK = 0, the
master latch is enabled and the value of D passes through
it. Meanwhile, the slave latch retains its previous value. When
CLK turns to 1, the master latch is switched off and retains its
previous value. At the same time, slave latch is enabled and the
value from the master latch passes through. This mechanism
is implemented by the following reactions:

CLK0 +D0 −→ CLK0 +D0 +M ′0
CLK0 +D1 −→ CLK0 +D1 +M ′1

2M ′0 −→ ∅
2M ′1 −→ ∅

M ′0 +M1 −→ M0

M ′1 +M0 −→ M1

CLK1 +M0 −→ CLK1 +M0 +Q′0
CLK1 +M1 −→ CLK1 +M1 +Q′1

2Q′0 −→ ∅
2Q′1 −→ ∅

Q′0 +Q1 −→ Q0

Q′1 +Q0 −→ Q1.

(16)

We also include the bistable bit operation reactions for M and
Q. In the set of Reactions 16, the first six reactions implement
the master latch, which is enabled by CLK0. The slave latch,
enabled by CLK1, takes M0 and M1, the output of the master
latch, as its input signals. It is implemented by the last six
reactions.

The transient simulation results are shown in Figure 3D.
They are obtained by simulating DNA strand-displacement
reactions mapped from Reactions 16. Clearly, the output Q
follows the value of D only at rising edges of the CLK

signal.2

VI. EXAMPLES

In this section, we demonstrate three full-fledged examples
of digital designs implemented with molecular reactions: a
digit-serial square-root unit, a binary adder and a sequential
linear feedback shift register (LFSR).

A. A Square-Root Unit
We implement a square-root unit [33] with our constructs

for logic gates (The design presented here is with a 4-bit
output). It consists of 14 controlled add subtract cells (CAS).
a7 is the most significant bit of input; a0 is the least significant
bit. q3 is the most significant bit of output; q0 is the least
significant bit. There are eight gates in each CAS. Each
gate is implemented by the corresponding molecular reactions
discussed in previous section. The unit computes square-root
in a systematic way and can be easily extended to n-bit output,
for values of n > 4.

Figure 4 shows the schematic and simulation results of
the square-root unit. In Figure 4(c), the input values for the
system are a7a6 · · · a0 = 10101001, a7a6 · · · a0 = 01100001,
a7a6 · · · a0 = 01111111, respectively. The outputs correctly
show the square root of the input values. We see that the less
significant bits reach the correct levels more slowly than more
significant bits, because the values of the former depend on
the values of the latter.

B. A Binary Adder
We implement a four-bit adder with our constructs for logic

gates (The design presented here can be easily extended to an
n-bit adder, for values of n > 4). The block diagram of the
adder is shown in Figure 5A. It consists of three full adder
(FA) components and one half adder (HA) component. S3 is
the most significant bit of output; S0 is the least significant
bit. Schematics of full adder and half adder are shown in
Figure 5B. There are five gates in full adder and two gates
in half adder. Each gate is implemented by corresponding
molecular reactions discussed in Section IV. Due to space
limit, we do not list them here.

Transient solutions of three different input combinations
are shown in Figure 5C. They are obtained by solving DNA

2A discussion of how to generate proper “clock” signals is beyond the
scope of this paper. A variety of molecular oscillators have been proposed in
the literature; these could readily be used for this purpose.
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strand-displacement reactions. The input combinations are
“0111”+“1110”, “0111”+“0101”, and ”1111”+“0001”. We see
that the output signals converge to the correct values.

C. A Linear Feedback Shift Register
We also demonstrate the design of a sequential degree-3

LFSR. Its schematic is shown in Figure 5D. It consists of
three D flip-flops and one XOR gate.

We synthesize the components of the LFSR according to
Reactions 11 and 16. Transient simulation results are shown
in Figure 5E. We set initial values to A = B = C =“111”.
All possible states, except “000”, are visited in 7 clock cycles.
The LFSR works as expected.

VII. REMARKS

Although pertaining to biology, the contributions of this
paper are not experimental nor empirical; rather they are
constructive and conceptual. The premise is that one can
design a set of molecular reactions which are further mapped
to DNA strand-displacement reactions; such reactions translate
into a set of coupled differential equations modeling the rate
of change of concentrations according to chemical kinetics;
simulating the differential equations provides an accurate
characterizing of how the system would behave. The challenge
is how to design the set of reactions to implement specific
forms of computation.

We are the first to design robust digital logic with molecular
reactions. Compared to previous attempts, the bit transitions
in our designs are remarkably crisp. Errors do not accumulate
across cycles in sequential computation. Significantly, our de-
signs do not depend on specific reaction rates; the computation
is accurate for a wide range of rates. This is crucial for
mapping the design to DNA substrates.

DNA strand displacement is a well-developed experimental
chassis. A detailed discussion of the mapping to this substrate
and the corresponding experimental procedures are beyond
the scope of this paper. We point the reader to [5]. Our
contribution can be positioned as the “front-end” of the design
flow; the DNA assembler and experimental chassis described
by these authors constitute the “back-end”.
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