
Cyclic Combinational Circuits:
Analysis for Synthesis

Marc D. Riedel and Jehoshua Bruck

California Institute of Technology

Mail Code 136-93, Pasadena, CA 91125

E-mail: {riedel, bruck}@paradise.caltech.edu

Abstract— Digital circuits are called combinational if they
are memoryless: they have outputs that depend only on the
current values of the inputs. Combinational circuits are
generally thought of as acyclic (i.e., feed-forward) struc-
tures. And yet, cyclic circuits can be combinational. In
previous work, we showed that introducing cycles permits
optimizations of area. We proposed a general methodology
for the synthesis of multilevel networks with cyclic topolo-
gies and incorporated it in a logic synthesis environment.
In trials, benchmark circuits were optimized significantly,
with improvements of up to 30% in the area.

In this paper, we discuss the role of combinationality
analysis in the context of synthesis. We present a symbolic
framework for analysis based on a first-cut strategy. Unlike
previous approaches, our method does not require ternary-
valued simulation. It is formulated recursively, and thus
it permits us to cache analysis results for common sub-
networks through iterations of the synthesis process. We
also discuss timing analysis of cyclic combinational circuits.

Keywords— Feedback, Logic Synthesis, Combinational
Circuits

I. Introduction

THE term combinational means that a circuit has out-
puts that depend only on the current values of the

inputs (i.e., it is memoryless); the term sequential means
that a circuit has outputs that may depend upon past as
well as current input values (i.e., it has memory).

Combinational circuits are generally thought of as
acyclic structures, and sequential circuits as cyclic struc-
tures. In fact, combinational and sequential are often de-
fined in this way. A collection of logic gates connected
in an acyclic (i.e., loop-free) topology is clearly combina-
tional. Regardless of the initial values on the wires, once
the values of the inputs are fixed, the signals propagate to
the outputs. There is a clear correspondence between the
electrical behavior of the circuit and the abstract notion
of the boolean functions that it implements. The behavior
of a circuit with feedback is generally more complicated.
Such a circuit may exhibit timing-dependent behavior (as
in the case of an R-S Latch), and it may be unstable (as
in the case of an oscillator).

And yet, cyclic circuits can be combinational. Consider

This work is supported in part by the “Alpha Project” at the
Center for Genomic Experimentation and Computation, a National
Institutes of Health Center of Excellence in Genomic Sciences. The
Alpha Project is supported by a grant from the National Human
Genome Research Institute (Grant no. P50 HG02370).

the example shown in Figure 1, a lookup table for the first
16 digits of π. Given inputs a, b, c, d, specifying a number i

d, c, b, a π h, g, f, e

0 0 0 0 0 3 0 0 1 1
1 0 0 0 1 1 0 0 0 1
2 0 0 1 0 4 0 1 0 0
3 0 0 1 1 1 0 0 0 1
4 0 1 0 0 5 0 1 0 1
5 0 1 0 1 9 1 0 0 1
6 0 1 1 0 2 0 0 1 0
7 0 1 1 1 6 0 1 1 0
8 1 0 0 0 5 0 1 0 1
9 1 0 0 1 3 0 0 1 1
10 1 0 1 0 5 0 1 0 1
11 1 0 1 1 8 1 0 0 0
12 1 1 0 0 9 1 0 0 1
13 1 1 0 1 7 0 1 1 1
14 1 1 1 0 9 1 0 0 1
15 1 1 1 1 3 0 0 1 1

PSfrag replacements

e|f
e|h
f |g
g|e
g|h
h|f

e

f

g

h

e = f̄(ah̄ + c) + dh̄ + b̄

f = ād̄ḡ + a(b̄d + bc)

g = ābc̄ + h̄(aē + ād + b̄c)

h = f̄(a(c + d) + cd)

Fig. 1. Example: Lookup table for the digits of π.

between 0 and 15 (in binary), the network yields outputs,
e, f, g, h, specifying the i-th digit of π (in binary). Each
output is specified as a function of the input variables and
the other output functions. As shown, the network con-
tains cycles ((e, g, f), (e, g, f, h), and (f, h, g)). In spite
of this, the network is combinational. For each combi-
nation of input values, the network produces the correct
outputs, regardless of the initial state and independently
of all timing assumptions. To see this, consider specific
input values. For instance, with a = 0, b = 0, c = 0, d = 0,
the network simplifies to that shown in Figure 2, yielding
the correct value of e = 1, f = 1, g = 0, h = 0 (the first
digit of π, namely 3). With a = 1, b = 1, c = 1, d = 1,
the network simplifies to that shown in Figure 3, yielding
the correct value of e = 1, f = 1, g = 0, h = 0 (the 16th
digit of π, namely 3). The reader may verify that the net-
work implements all the values in between 0000 and 1111
correctly.

Although the premise of cycles in combinational circuits
has been established, combinational circuits are not de-
signed with feedback in practice. Except for relatively
simple cases of feedback at the level of functional units,
no one has attempted the synthesis of circuits with feed-
back at the logic level.

e = 1
f = ḡ = 1
g = 0
h = 0

PSfrag replacements

e|f
e|h
f |g
g|e
g|h
h|f

e

f

g

h

Fig. 2. Network in Figure 1 with a = 0, b = 0, c = 0, d = 0.

e = f̄ + h̄ = 1
f = 1
g = ē h̄ = 0
h = f̄ = 0

PSfrag replacements

e|f
e|h
f |g
g|e
g|h
h|f

e

f

g

h

Fig. 3. Network in Figure 1 with a = 1, b = 1, c = 1, d = 1.

A. Prior Work

In 1992, Stok observed that cycles sometimes occur
in combinational circuits synthesized from high-level de-
signs [16]. In such examples, feedback is carefully con-
trived, occurring when functional units are connected in
a cyclic topology. Recently, Edwards pointed out that
cycles arise in circuits synthesized from synchronous lan-
guages such as Esterel [7]. Most logic synthesis and veri-
fication tools balk when given cyclic designs for combina-
tional logic. Stok’s solution to this dilemma is to disallow
the creation of cycles in the resource-sharing phase of high-
level synthesis; Edwards’ approach is to transform cyclic
designs into equivalent acyclic ones.

In 1994, Malik addressed the issue of analyzing cyclic
combinational circuits [8]. He proved that deciding
whether a cyclic circuit is combinational or not is co-NP-
complete, and he formulated an analysis algorithm for
this task based on ternary-valued simulation. He also
addressed the issues of timing analysis and testing for
faults [9], [15]. In 1996, Shiple extended Malik’s work and
set it on a firm theoretical footing [12]. He showed that the
class of circuits that Malik’s procedure decides to be com-
binational are precisely those that are well-behaved electri-
cally, according to the up-bounded inertial delay model [6].
He proposed refinements to Malik’s algorithm [13] and ex-

tended the concept to combinational logic embedded in
sequential circuits [14].

B. Contributions

In previous work, we showed that combinational circuits
can be optimized significantly if cycles are introduced [10].
The intuition behind this is that, with feedback, all nodes
can potentially benefit from work done elsewhere; with-
out feedback, nodes at the top of the hierarchy must be
constructed from scratch. We proposed a general method-
ology for the synthesis of multilevel networks with cyclic
topologies and incorporated it in a general logic synthe-
sis environment, namely the Berkeley SIS package [11].
Our approach is to optimize a multilevel description in
the substitution phase, introducing feedback and poten-
tially reducing the area. In trials with benchmark circuits,
many were optimized significantly, with improvements of
up to 30% in the cost (as measured by the literal count
of the nodes expressed in factored form). In trials with
randomly generated examples, very nearly all had cyclic
solutions superior to acyclic forms. Thus, we argued for a
paradigm shift in combinational circuit design: we should
no longer think of combinational logic as acyclic in theory
or in practice, since nearly all combinational circuits are
best designed with cycles.

In this paper, we discuss the role of combinationality
analysis – determining whether cyclic logic is combina-
tional – in the context of synthesis. We present a sym-
bolic framework for analysis based on a first-cut strategy.
Unlike previous approaches, our method does not require
ternary-valued simulation. It is formulated recursively,
and thus it permits us to cache analysis results for common
sub-networks through iterations of the search. We also dis-
cuss timing analysis of cyclic combinational circuits.

C. Definitions and Notation

The exposition in this paper is based upon so-called
symbolic operations, in which boolean functions are used
to encode input patterns. The representation that we used
in our implementation is based on Binary Decision Dia-
grams (BDDs) [5].

We use the standard notation: addition (+) denotes
disjunction (OR), multiplication (·), denotes conjunction
(AND), and an overbar (x̄) denotes negation (NOT). The
restriction operation (also known as the cofactor) of a
function f with respect to a variable x,

f |x=v,

refers to the assignment of the constant value v ∈ {0, 1}
to x. The composition operation of a function f with
respect to a variable x and a function g,

f |x=g,

refers to the substitution of g for x in f . A function f de-

pends upon a variable x iff f |x=0 is not identically equal

to f |x=1. Call the variables that a function depends upon
its support set.

The universal quantification operation (also known
as consensus) yields a function

∀ (y1, . . . , yn)f

that equals 1 iff the given function f equals 1 for all 2n

assignments of boolean values to the variables y1, . . . , yn.
The existential quantification operation (also known as
smoothing) yields a function

∃ (y1, . . . , yn)f

that equals 1 iff the given function f equals 1 for some

assignment of boolean values to the variables y1, . . . , yn.
The marginal operation yields a function

f ↓ (y1, . . . , yn)

that equals 1 iff the given function f is invariant for all 2n

assignments of boolean values to y1, . . . , yn. For a single
variable y, it equals 1 iff f |y=0 agrees with f |y=1,

f ↓ y = f |y=0 · f |y=1 + f |y=0 · f |y=1.

(For a single variable, the marginal is the complement of
what is known as the boolean difference.) For several vari-
ables y1, . . . , yn, the marginal is computed as the universal
quantification of the product of the marginals:

f ↓ (y1, . . . , yn) = ∀ y1, . . . yn [(f ↓ y1) · · · (f ↓ yn)] .

(With several variables, the marginal is not the same as
the complement of the boolean difference, in general.) For
example, with

f = x1 + x2y1 + x3y2 + x4y1y2,

we have,

f ↓ y1 = x1 + x3y2 + x̄2(x̄4 + ȳ2),

f ↓ y2 = x1 + x2y1 + x̄3(x̄4 + ȳ1),

f ↓ (y1, y2) = x1 + x̄2x̄3x̄4.

Note that computing a marginal of n variables requires
O(n) symbolic operations.

D. Network Model

Our model is at the level of abstraction applicable in the
technology-independent phase of logic synthesis. Our goal
is to construct a network that computes boolean functions
of boolean input variables x1, . . . , xm. Internally, the net-
work is specified as a collection of nodes N . Associated
with each node is a node function fi and an internal

variable yi, 1 ≤ i ≤ n. The node functions depend on
input variables as well as on internal variables. In the de-

pendency graph, a directed edge is drawn from node i

to node j iff the node function fj associated with node j

depends on the internal variable yi associated with node i.

Also associated with each node is a target function

gi (in the case of acyclic networks this would be the “col-
lapsed” function).1

The target functions depend on the input variables only.
A subset of the nodes are designated as output nodes.
For these, the target functions are the requisite output
functions. If we substitute the target function gj for each
corresponding internal variable yj in a node function fi,
we get the corresponding target function gi,

fi|y1=g1,...,yn=gn
= gi.

For a fixed assignment of inputs, call the network the in-

duced network, and call the associated dependency graph
the induced dependency graph. In the induced network,
if a node function fi doesn’t depend upon any internal
variable (i.e., it evaluates to 0 or 1), then we may substi-
tute this value for the corresponding internal variable yi in
other expressions. In this way, we can continue to simplify
the network, until no further simplifications are possible.
Call the result the simplified induced network.

E. Definition of Combinationality

A network is combinational iff it computes unique
boolean output values for each boolean input assignment.
We sometimes abuse this terminology and say that a net-
work is combinational for a specific input assignment,
meaning that it computes unique boolean output values
for that input assignment. If there are “don’t care” con-
ditions on the inputs, then it is sufficient if the network
computes unique boolean values for input assignments in
the “care” set.

This computation must hold:

• regardless of the initial state
• and independently of all timing assumptions.

Proposition 1 A network is combinational iff, for each

assignment of boolean values to the inputs, all output

nodes in the simplified induced network evaluate to defi-

nite boolean values.

This definition of combinationality is functionally equiva-
lent to that proposed in earlier work. Malik [8] suggested
the ternary model for the analysis of cyclic combinational
circuits. Following Bryant [4], his approach for deciding
combinationality is based on ternary-valued simulation.
He uses a “dual-rail” encoding (10 for one, 01 for zero,
and 11 for “unknown”) to reduce the problem to boolean
simulation.

1We use xi, yi, fi, gi when we refer to networks in the abstract.
However, for the sake of readability, in our examples we use a, b, c, . . .
for the input variables. We use e, f, g, . . . for the node functions, the
internal variables, and the target functions: on the left-hand side of
an equation the symbol refers to either a node function or a target
function depending on the context; on the right-hand side, it refers
to the associated internal variable.

II. Analysis

We formulate a symbolic framework for analysis that ob-
viates the need for ternary-valued simulation. We tackle
the problem with a divide-and-conquer approach: progres-
sively smaller components of the network are analyzed for
combinationality. We note that if a network’s dependency
graph can be divided into several distinct strongly con-
nected components, then the analysis may be performed
separately on each component. For simplicity, we assume
that each node in the network is an output node.

A. Symbolic Framework

We analyze which input assignments, when substituted
into a node function, force it to a definite boolean value,
independent of all internal variables in its support set. For
a node function fi, let Ii be the set of internal variables
that it depends upon. The marginal operator, defined in
Section I-C, is the required tool. If

fi ↓ Ii

holds, then fi has a definite boolean value equal to the
corresponding target function gi. For a network N , to
obtain the restriction

N|fi
,

the node fi is removed, and the corresponding target func-
tion gi is substituted for the internal variable yi in every
node function in which it appears. We stress that this
restriction is an auxiliary construct for analysis, not an
attempt to redesign the network under consideration.

Let C(N) denote the necessary and sufficient condition
for combinationality, expressed as a function of the input
variables.

The following theorem provides a means to compute this
necessary and sufficient condition:

Theorem 1

C(N) = [f1 ↓ I1] · C(N|f1
) + · · · + [fn ↓ In] · C(N|fn

).

Sketch of Proof: For a network with cycles, we argue
that, for each input assignment, at least one node function
must evaluate to a definite boolean value independently of
all the others. Indeed, if none of the functions evaluates to
a definite boolean value, then no simplifications are pos-
sible and the network is not combinational. A function fi

evaluates to a definite boolean value independently of the
others iff the marginal holds,

fi ↓ Ii.

Now, if a node function fi evaluates to a definite boolean
value, this value is given by the corresponding target func-
tion gi. If we cut this node from the network, then the rest
of the network must be combinational, that is,

C(N|fi
)

must hold. Indeed, if a component of the network viewed
in isolation is not combinational, then the entire network
is not combinational. 2

We illustrate the analysis with several examples. For
Examples 1 and 2, consider the target functions,

d = c̄(ā + b̄) + āb̄

e = ābc̄ + b̄(a + c)

f = b̄(ā + c̄) + ab.

Example 1

Consider the network N1, shown in Figure 4. Note that

d = b̄c̄ + āe

e = b̄(a + c) + c̄f̄

f = ab + b̄d

d

PSfrag replacements

e|f
e|h
f |g
g|e
g|h
h|f

e

f

g
h

Fig. 4. Example: Network N1.

the dependency graph is a single cycle. The necessary and
sufficient condition for combinationality is

C(N1) = [d ↓ e] · C(N1|d) +

[e ↓ f] · C(N1|e) +

[f ↓ d] · C(N1|f).

The marginals are

d ↓ e = a + b̄c̄

e ↓ f = c + ab̄

f ↓ d = b.

Since we have a single cycle,

C(N1|d) = C(N1|e) = C(N1|f) ≡ 1.

Thus,

C(N1) = a + b̄c̄ + c + ab̄ + b ≡ 1.

We conclude that the network is combinational for all in-
put assignments.

Example 2

Now consider the network N2, shown in Figure 5. Note
that the dependency graph is the complete graph on three
nodes. The necessary and sufficient condition for combi-
nationality is

C(N2) = [d ↓ (e, f)] · C(N2|d) +

[e ↓ (d, f)] · C(N2|e) +

[f ↓ (d, e)] · C(N2|f).

d = b̄f + c̄e

e = d(a + f̄) + b̄c

f = aē + b̄d

d

PSfrag replacements

e|f
e|h
f |g
g|e
g|h
h|f

e

f
g
h

Fig. 5. Example: Network N2.

The marginals are

d ↓ (e, f) = bc

e ↓ (d, f) = b̄c

f ↓ (d, e) = āb.

For the restriction N2|d, we compute

e|d = b̄(a + c) + āc̄f̄

f |d = b̄(ā + c̄) + aē.

For this restriction, the marginals are

(e|d) ↓ f = a + c

(f |d) ↓ e = ā + b̄c̄.

Now, recursively,

C(N2|d) = [(e|d) ↓ f] · (1) + [(f |d) ↓ e] · (1)

= a + c + ā + b̄c̄

= 1.

Similarly, we compute

C(N2|e) = 0

C(N2|f) = b̄ + c.

Thus,

C(N2) = (bc) · (1) + (b̄c) · (0) + (āb) · (b̄ + c)

= bc.

We conclude that the network is combinational iff
b = c = 1.

Example 3

Consider the example in Figure 1,

e = f̄(ah̄ + c) + dh̄ + b̄

f = ād̄ḡ + a(b̄d + bc)

g = ābc̄ + h̄(aē + ād + b̄c)

h = f̄(a(c + d) + cd).

PSfrag replacements

e|f
e|h
f |g
g|e
g|h
h|f

e

f

g

h

The target functions for this network are

e = ac̄d̄ + d(c + ā) + b̄

f = ad(c + b̄) + d̄(āb̄c̄ + bc)

g = āc̄(d + b) + c(ab̄d + d̄(āb̄ + ab))

h = ab̄cd̄ + d(abc̄ + āc).

The network is combinational iff the following condition
holds

C(N) = [e ↓ (f, h)] · C(N|e) + [f ↓ g] · C(N|f) +

[g ↓ (e, h)] · C(N|g) + [h ↓ f] · C(N|h).

Proceeding on a case basis:

Case I

Suppose that e assumes a definite boolean value indepen-
dently of f and h:

e ↓ (f, h) = āc̄d̄ + b̄.

Given this predicate, we obtain the sub-network N|e by
substituting the target function for e into g:

f = ād̄ḡ + a(b̄d + bc)

g|e = ābc̄ + h̄(c(ad̄ + b̄) + d(bc̄ + ā))

h = f̄(a(c + d) + cd).

PSfrag replacements

e|f
e|h
f |g

g|e

g|h
h|f

e

f

g
h

Note that N|e contains a single cycle through nodes f, h

and g|e. We have three subcases:

1) suppose that f assumes a definite boolean value inde-
pendently of g|e:

f ↓ (g|e) = a + d,

2) suppose that g|e assumes a definite boolean value inde-
pendently of h:

(g|e) ↓ h = b(acd + ād̄) + c̄(ab̄ + āb + d̄),

3) suppose that h assumes a definite boolean value inde-
pendently of f :

h ↓ f = d̄(ā + c̄) + āc̄.

In each case, the assumption breaks the cycle. Assembling
the three cases,

C(N|e) = [f ↓ (g|e)] + [(g|e) ↓ h] + [h ↓ f] ≡ 1.

We conclude that the sub-network N|e is combinational.

Case II

Suppose that f assumes a definite boolean value indepen-
dently of g:

f ↓ g = a + d.

Given this predicate, the sub-network N|f is obtained by
substituting the target function for f into h,

e = f̄(ah̄ + c) + dh̄ + b̄

g = ābc̄ + h̄(aē + ād + b̄c)

h|f = ab̄cd̄ + d(abc̄ + āc).

PSfrag replacements

e|f
e|h
f |g
g|e
g|h

h|f

e

f

g

h

This sub-network is acyclic and hence combinational:
C(N|f) ≡ 1.

Case III

Suppose that g assumes a definite boolean value indepen-
dently of e and h:

g ↓ (e, h) = ā(d̄(b + c̄) + bc̄).

Given this predicate, the sub-network N|g is obtained by
substituting the target function for g into f ,

e = f̄(ah̄ + c) + dh̄ + b̄

f |g = a(b̄d + bc) + d̄(āb̄c̄ + bc)

h = f̄(a(c + d) + cd).

PSfrag replacements

e|f
e|h

f |g

g|e
g|h
h|f

e

f

g

h

This sub-network is acyclic and hence combinational:
C(N|g) ≡ 1.

Case IV

Finally, suppose that h assumes a definite boolean value
independently of f :

h ↓ f = d̄(ā + c̄) + āc̄.

Given this predicate, the sub-network N|h is obtained by
substituting the target function for h into e,

e|h = d(āc̄ + ac) + f̄(ad̄ + c) + b̄

f = ād̄ḡ + a(b̄d + bc)

g = ābc̄ + h̄(aē + ād + b̄c).

PSfrag replacements

e|f

e|h

f |g
g|e
g|h
h|f

e
f

g

h

Analyzing N|h in the same manner as in Case I, we find
that C(N|h) ≡ 1.

Assembling the four cases,

C(N) = [e ↓ (f, h)] · (1) + [f ↓ g] · (1) +

[g ↓ (e, h)] · (1) + [h ↓ f] · (1)

≡ 1.

Thus we conclude that the network in Figure 1 is combi-
national.

B. Complexity

Malik has shown that the problem of analyzing a
network to determine if it is combinational is co-NP-
complete [8]. In the recursive decomposition of the neces-
sary and sufficient condition for combinationality, one may
encounter the same sub-network several times. Restriction
is invariant to order so that for any i, j,

(N|fi
)|fj

= (N|fj
)|fi

.

We need not recompute the condition for the same com-
ponent encountered twice. For instance, in a network with
nodes, f1, f2, . . ., we compute

C(N) = (f1 ↓ y1) · C(N|f1
) + (f2 ↓ y2) · C(N|f2

) + · · · .

Recursively, we compute

C(N|f1
) = ((f2|y1

)|y2
) · C((N|f1

)|f2
) + · · · ,

and

C(N|f2
) = ((f1|y2

)|y1
) · C((N|f2

)|f1
) + · · · .

We need not recompute (N|f2
)|f1

, as it is equal to
(N|f1

)|f2
.

For a network corresponding to a complete graph on
n nodes, the analysis requires on the order of n · 2n steps
(there are 2n subsets of n nodes, each of which has n terms
to evaluate). For less densely connected networks, the
analysis is, of course, less complex.

C. Timing

For timing analysis, Malik’s approach is to transform a
cyclic circuit into an equivalent acyclic one [8], much as
Edwards proposes in recent work [7]. Timing information

is then obtained through functional timing analysis of the
acyclic circuit.

We argue that timing analysis can be performed directly
on a cyclic combinational circuit. In fact, timing analysis
is closely related to combinationality analysis. In timing
analysis, the goal is to find the longest sensitized path; in
combinationality analysis, the goal is to ascertain whether
there are any sensitized cycles (i.e., sensitized paths that
bite their own tail).

In future work, we will address the issue of timing anal-
ysis in the context of synthesis as part of a complete
methodology.

III. Synthesis Algorithms

The goal in multilevel logic synthesis (also sometimes
called random logic synthesis) is to obtain the best mul-
tilevel, structured representation of a network. The pro-
cess typically consists of an iterative application of mini-
mization, decomposition, and restructuring operations [3].
An important operation is substitution, in which node
functions are expressed, or re-expressed, in terms of other
node functions as well as of their original inputs. Our
strategy is to introduce combinational cycles in the sub-
stitution phase. We have explored several approaches, in-
cluding dynamic programming and branch-and-bound al-
gorithms [10]. Here we discuss the interplay of analysis
and synthesis in the design process.

The analysis method described in Section II is formu-
lated recursively. Accordingly, it permits us to cache anal-
ysis results for common sub-networks through iterations of
the search for a solution. Suppose that in the course of our
search for a low-cost combinational solution we consider a
network N1 with node functions

f1, . . . , fn.

Analysis for combinationality entails evaluating the ex-
pression C(N1), given in Theorem 1. Next, suppose that
we consider a network N2 with node functions

f ′

1
, . . . , f ′

n.

Analysis entails evaluating C(N2). Now suppose that
some of the node functions in N1 are identical to those
in N2. Let S be the subset of nodes that are identical:

∀ i ∈ S, fi ≡ f ′

i .

The evaluation of C(S) figures in both C(N1) and C(N2),
and so it need not be repeated. If, in the process of eval-
uating C(N1), we find that C(S) = 0, then we rule out
N1 as well as N2 (and all other networks that contain
S). Otherwise, we find that C(S) ≡ 1, and we need not
re-evaluate it when evaluating N2 (or any other network
that contains S). We illustrate with examples.

Example 1

Consider again the example in Figure 1. Suppose that we
have constructed the network for nodes f and g shown in
Figure 6, assuming that nodes e and h are given . Analysis

f = āḡh̄ + a(de + g)

g = āf̄ h̄ + f(aē + b̄c)

PSfrag replacements

e|f
e|h
f |g
g|e
g|h
h|f

e

f

g

h

Fig. 6. A non-combinational component.

according to Theorem 1 tells us that this component is not

combinational. Thus, we exclude this pair of node func-
tions as candidates for f and g.

Example 2

Now suppose that we have constructed the candidates for
nodes e, f and g shown in Figure 7.

e = f̄(ah̄ + c) + dh̄ + b̄

f = ād̄ḡ + a(b̄d + bc)

g = ābc̄ + h̄(aē + ād + b̄c)

PSfrag replacements

e|f
e|h
f |g
g|e
g|h
h|f

e

f

g

h

Fig. 7. A combinational component.

Analysis tells us that this component is combinational.
We can proceed to select a node function for h. The can-
didates are

h1 = c(ad̄e + ād) + dē

h2 = f̄(a(c + d) + cd)

h3 = ḡ(d(bc̄ + ā) + b̄c)

h4 = cf̄(a + d) + dē

h5 = f̄ ḡ(c + d)

h6 = cf̄ ḡ + dē.

When analyzing networks constructed with these candi-
dates for h, we need not re-evaluate the component e, f, g

from Figure 7. We find that if h2 is combined with this
component, it yields a combinational network (that shown
in Figure 1).

IV. Results

In [10], we present synthesis results for benchmark cir-
cuits [1], [2]. We note that solutions for many of the exam-
ples contain dozens or even hundreds of cycles. The depen-
dency graph of the cyclic solution for one of the Espresso
benchmark circuits, exp, is shown in Figure 8.

a

i

b

c

j

k

m

o

n

PSfrag replacements

e|f
e|h
f |g
g|e
g|h
h|f

e
f

g

h

Fig. 8. Topology of the cyclic solution for the benchmark circuit
exp, with 8 inputs, 18 outputs, and cost 262. Only nodes in the
strongly-connected component are shown.

V. Discussion

We feel that we have made the case for a paradigm shift
in combinational circuit design: we should no longer think
of combinational logic as acyclic in theory or in practice,
since nearly all combinational circuits are best designed
with cycles. With the symbolic framework presented here,
the behavior of cyclic combinational circuits can be de-
scribed in terms of successively smaller components. Cir-
cuits can be synthesized incrementally by adding combi-
national sub-components. Also, given an acyclic design we
can resynthesize the circuit by introducing feedback. We
argue that functional timing analysis is no more difficult
for cyclic circuits than for acyclic circuits.

In future work, we will address the topic of synthesizing
cyclic combinational circuits targeting delay and power.

References

[1] Benchmarks from the 1993 Int’l Workshop on Logic Synthesis,
available at http://www.cbl.ncsu.edu/.

[2] Benchmarks from “Logic Minimization Algorithms for
VLSI Synthesis,” by R. K. Brayton et al., available at
ftp://ic.eecs.berkeley.edu/.

[3] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.
Sangiovanni-Vincentelli, “Multilevel Logic Synthesis,” Proceed-
ings of the IEEE, Vol. 78, No. 2, pp. 264–300, 1990.

[4] R. E. Bryant, “Boolean Analysis of MOS Circuits,” IEEE Trans.
Computer-Aided Design, pp. 634–649, 1987.

[5] R. E. Bryant, “Graph-based Algorithms for Boolean Function

Manipulation,” IEEE Trans. Computers, Vol. C-35, pp. 677–691,
1986.

[6] J. A. Brzozowski and C.-J. H. Seger, “Asynchronous Circuits,”
Springer-Verlag, 1995.

[7] S. A. Edwards, “Making Cyclic Circuits Acyclic,” Design Au-
tomation Conf., 2003, to appear.

[8] S. Malik, “Analysis of Cyclic Combinational Circuits,” IEEE
Trans. Computer-Aided Design, Vol. 13, No. 7, pp. 950–956,
1994.

[9] A. Raghunathan, P. Ashar, and S. Malik, “Test Generation for
Cyclic Combinational Circuits,” IEEE Trans. Computer-Aided
Design, Vol. 14, No. 11, pp. 1408–1414, 1995.

[10] M. Riedel and J. Bruck, “The Synthesis of Cyclic
Combinational Circuits,” Design Automation Conf.,
2003, to appear, available as Tech. Rep. ETR052,
http://www.paradise.caltech.edu/ETR.html.

[11] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A System for Sequential Circuit Synthesis,”
Tech. Rep. UCB/ERL M92/41, Electronics Research Lab, Uni-
versity of California, Berkeley, 1992.

[12] T. R. Shiple, “Formal Analysis of Synchronous Circuits,” Ph.D.
Thesis, University of California, Berkeley, 1996.

[13] T. R. Shiple, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Analysis of Combinational Cycles in Sequential Cir-
cuits,” IEEE Int’l Symp. Circuits and Systems, Vol. 4, pp. 592–
595, 1996.

[14] T. R. Shiple, G. Berry, and H. Touati, “Constructive Analysis of
Cyclic Circuits,” European Design and Test Conf., pp. 328–333,
1996.

[15] A. Srinivasan and S. Malik, “Practical Analysis of Cyclic Com-
binational Circuits,” IEEE Custom Integrated Circuits Conf.,
pp. 381–384, 1996.

[16] L. Stok, “False Loops Through Resource Sharing,” Int’l Conf.
Computer-Aided Design, pp. 345–348, 1992.

