
1

Logic Synthesis for Switching Lattices
Mustafa Altun and Marc D. Riedel

Abstract—This paper studies the implementation of Boolean functions by lattices of four-terminal switches. Each switch is controlled
by a Boolean literal. If the literal takes the value 1, the corresponding switch is connected to its four neighbours; else it is not connected.
A Boolean function is implemented in terms of connectivity across the lattice: it evaluates to 1 iff there exists a connected path between
two opposing edges of the lattice. The paper addresses the following synthesis problem: how should we assign literals to switches in a
lattice in order to implement a given target Boolean function? We seek to minimize the lattice size, measured in terms of the number
of switches. We present an efficient algorithm for this task – one that does not exhaustively enumerate paths but rather exploits the
concept of Boolean function duality. Our algorithm produces lattices with a size that grows linearly with the number of products of the
target Boolean function. It runs in time that grows polynomially. We evaluate the algorithm on benchmark circuits. We compare the
synthesis results to a lower-bound calculation on the lattice size.

Index Terms—Boolean Functions, Switching Circuits, Lattices, Nanowire Crossbar Arrays

F

1 INTRODUCTION

In his seminal Master’s Thesis, Claude Shannon made
the connection between Boolean algebra and switch-
ing circuits [2]. He considered two-terminal switches
corresponding to electromagnetic relays. An example
of a two-terminal switch is shown in the top part of
Figure 1. The switch is either ON (closed) or OFF (open).
A Boolean function can be implemented in terms of
connectivity across a network of switches, often arranged
in a series/parallel configuration. An example is shown
in the bottom part of Figure 1. Each switch is controlled
by a Boolean literal. If the literal is 1 (0) then the
corresponding switch is ON (OFF). The Boolean function
for the network evaluates to 1 if there is a closed path
between the left and right nodes. It can be computed
by taking the sum (OR) of the product (AND) of literals
along each path. These products are x1x2x3, x1x2x5x6,
x4x5x2x3, and x4x5x6.

x4
x5

x6

x2 x3

x1 x6x2

x1 x3x2

Fig. 1: Two-terminal switching network implementing the
Boolean function x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

In this paper, we develop a method for synthesiz-
ing Boolean functions with networks of four-terminal

• This work is supported by an NSF CAREER award #0845650.
• E-mail: {altu0006, mriedel}@umn.edu
• A preliminary version of this paper appeared in [1].

switches. An example is shown in the top part of Fig-
ure 2. The four terminals of the switch are all either
mutually connected (ON) or disconnected (OFF). We
consider networks of four-terminal switches arranged in
rectangular lattices. An example is shown in the bottom
part of Figure 2. Again, each switch is controlled by
a Boolean literal. If the literal takes the value 1 (0)
then corresponding switch is ON (OFF). The Boolean
function for the lattice evaluates to 1 iff there is a closed
path between the top and bottom edges of the lattice.
Again, the function is computed by taking the sum of the
products of the literals along each path. These products
are x1x2x3, x5x1x2x6, x5x4x2x3, and x5x4x6 – the same
as those in Figure 1. We conclude that this lattice of four-
terminal switches implements the same Boolean function
as the network of two-terminal switches in Figure 1.

x4

x5

x6

x1

x2

x3

Fig. 2: Four-terminal switching network implementing the
Boolean function x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

Although conceptually general, our model of four-
terminal switches is applicable for variety of nanoscale
technologies, such as nanowire crossbar arrays [3], [4].



2

It may also be applicable for magnetic and molecular
switch-based structures [5], [6]. Throughout the paper
we will use a “checkerboard” representation for lattices
where black and white sites represent ON and OFF
switches, respectively, as illustrated in Figure 3. We will
discuss the Boolean functions implemented in terms of
connectivity between the top and bottom edges as well
as connectivity between the left and right edges. (We will
refer to these edges as “plates”.)

Fig. 3: A 3×3 four-terminal switch network and its lattice form.

This paper addresses the following synthesis problem:
how should we assign literals to switches in a lattice
in order to implement a given target Boolean function?
Suppose that we are asked to implement the function
f(x1, x2, x3, x4) = x1x2x3 + x1x4. We might consider
the lattice in Figure 4(a). The product of the literals in
the first column is x1x2x3; the product of the literals
in the second column is x1x4. We might also consider
the lattice in Figure 4(b). The products for its columns
are the same as those for (a). In fact, the two lattices
implement two different functions, only one of which is
the intended target function. To see why this is so, note
that we must consider all possible paths, including those
shown by the red and blue lines. In (a) the product x1x2

corresponding to the path shown by the red line covers
the product x1x2x3 so the function is fa = x1x2 + x1x4.
In (b) the products x1x2x4 and x1x2x3x4 corresponding
to the paths shown by the red and blue lines are re-
dundant, covered by column paths, so the function is
fb = x1x2x3 + x1x4.

Fig. 4: Two 3×2 lattices implementing different Boolean func-
tions.

In this example, the target function is implemented
by a 3 × 2 lattice with four paths. If we were given

a target function with more products, a larger lattice
would likely be needed to implement it; accordingly, we
would need to enumerate more paths. Here the problem
is that number of paths grows exponentially with the
lattice size. Any synthesis method that enumerates paths
quickly becomes intractable.

In Section 2, we present an efficient algorithm for
this task – one that does not exhaustively enumerate
paths but rather exploits the concept of Boolean function
duality [7], [8]. Our algorithm produces lattices with a
size that grows linearly with the number of products of
the target Boolean function. It runs in time that grows
polynomially. In Section 3, we derive a lower bound on
the size of a lattice required to implement a Boolean
function. In Section 4, we evaluate our synthesis method
on standard benchmark circuits.

1.1 Definitions
Definition 1 Consider k independent Boolean variables,
x1, x2, . . . , xk. Boolean literals are Boolean variables and
their complements, i.e., x1, x̄1, x2, x̄2, . . . , xk, x̄k.

Definition 2 A product (P) is an AND of literals, e.g.,
P = x1x̄3x4. A set of a product (SP) is a set containing
all the product’s literals, e.g., if P = x1x̄3x4 then SP =
{x1, x̄3, x4}. A sum-of-products (SOP) expression is an
OR of products.

Definition 3 A prime implicant (PI) of a Boolean function
f is a product that implies f such that removing any literal
from the product results in a new product that does not
imply f.

Definition 4 An irredundant sum-of-products expres-
sion (ISOP) is an SOP, where each product is a PI and no
PI can be deleted without changing the Boolean function f
represented by the expression. Among the SOPs for f , one
with the minimum number of products is a minimum sum-
of-products expression (MSOP).

Definition 5 f and g are dual Boolean functions iff

f(x1, x2, . . . , xk) = ḡ(x̄1, x̄2, . . . , x̄k).

Given an expression for a Boolean function in terms of AND,
OR, NOT, 0, and 1, its dual can also be obtained by inter-
changing the AND and OR operations as well as interchang-
ing the constants 0 and 1. For example, if f(x1, x2, x3) =
x1x2 + x̄1x3 then fD(x1, x2, x3) = (x1 + x2)(x̄1 + x3). A
trivial example is that for f = 1, the dual is fD = 0.

2 SYNTHESIS METHOD

In our synthesis method, a Boolean function is im-
plemented by a lattice according to the connectivity
between the top and bottom plates. In order to elucidate
our method, we will also discuss connectivity between
the left and right plates. Call the Boolean functions cor-
responding to the top-to-bottom and left-to-right plate



3

connectivities fL and gL, respectively. As shown in Fig-
ure 5, each Boolean function evaluates to 1 if there exists
a path between corresponding plates, and evaluates to
0 otherwise. Thus, fL can be computed as the OR of all
top-to-bottom paths, and gL as the OR of all left-to-right
paths. Since each path corresponds to the AND of inputs,
the paths taken together correspond to the OR of these
AND terms, so implement sum-of-products expressions.

Fig. 5: Relationship between Boolean functionality and paths.
(a): fL = 1 and gL = 0. (b): fL = 1 and gL = 1.

Example 1 Consider the lattice shown in Figure 6. It consists
of six switches. Consider the three top-to-bottom paths x1x4,
x2x5, and x3x6. Consider the four left-to-right paths x1x2x3,
x1x2x5x6, x4x5x2x3, and x4x5x6. While there are other
possible paths, such as the one shown by the dashed line, all
such paths are covered by the paths listed above. For instance,
the path x1x2x5 shown by the dashed line is covered by the
path x2x5 shown by the solid line, and so is redundant. We
conclude that the top-to-bottom function is the OR of the
three products above, fL = x1x4 + x2x5 + x3x6, and the
left-to-right function is the OR of the four products above,
gL = x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

Fig. 6: A 2×3 lattice with assigned literals.

We address the following logic synthesis problem:
given a target Boolean function fT , how should we
assign literals to the sites in a lattice such that the top-
to-bottom function fL equals fT ? More specifically, how
can we assign literals such that the OR of all the top-to-
bottom paths equals fT ? In order to solve this problem
we exploit the concept of lattice duality, and work with
both the target Boolean function and its dual.

Suppose that we are given a target Boolean function
fT and its dual fD

T , both in ISOP form such that

fT = P1 + P2 + · · ·+ Pn and
fD

T = P ′1 + P ′2 + · · ·+ P ′m

where each Pi is a prime implicant of fT , i = 1, . . . n,
and each P ′j is a prime implicant of fD

T , j = 1, . . . m.† We
use a set representation for the prime implicants:

Pi → SPi, i = 1, 2, . . . , n

P ′j → SP ′j , j = 1, 2, . . . ,m

where each SPi is the set of literals in the corresponding
product Pi and each SP ′j is the set of literals in the
corresponding product P ′j .

2.1 Algorithm

We first present the synthesis algorithm; then we illus-
trate it with examples; then we explain why it works.

Above we argued that, in establishing the Boolean
function that a lattice implements, we must consider all
possible paths. Paradoxically, our method allows us to
consider only the column paths and the row paths, that
is to say, the paths formed by straight-line connections
between the top and bottom plates and between the left
and right plates, respectively. Our algorithm is formu-
lated in terms of the set representation of products and
their intersections.

1) Begin with fT and its dual fD
T , both in ISOP form.

Suppose that fT and fD
T have n and m products,

respectively.
2) Start with an m×n lattice. Assign each product of

fT to a column and each product of fD
T to a row.

3) Compute intersection sets for every site, as shown
in Figure 7.

4) Arbitrarily select a literal from an intersection set
and assign it to the corresponding site.

The proposed implementation technique is illustrated
in Figure 7. The technique implements fT with an m×n
lattice where n and m are the number of products of
fT and fD

T , respectively. Each of the n column paths
implements a product of fT and each of the m row paths
implements a product of fD

T . As we explain in the next
section, the resulting lattice implements fT and fD

T as the
top-to-bottom and left-to-right functions, respectively.
None of the paths other than the column and row paths
need be considered.

We present a few examples to elucidate our algorithm.

Example 2 Suppose that we are given the following target
function fT in ISOP form:

fT = x1x2 + x1x3 + x2x3.

†. Here ′ is used to distinguish symbols. It does not indicate
negation.



4

 f L
 =

f Td
 gL = fT

D

11 SPSP I 12 SPSP I 11 SPSPn I− 1SPSPn I

21 SPSP I 2SPSPn I

11 −mSPSP I 1−mn SPSP I

mSPSP I1 mSPSP I2 mn SPSP I1− mn SPSP I

Fig. 7: Proposed implementation technique.

We compute its dual fD
T in ISOP form:

fD
T = (x1 + x2)(x1 + x3)(x2 + x3),

fD
T = x1x2 + x1x3 + x2x3.

We have:

SP1 = {x1, x2}, SP2 = {x1, x3}, SP3 = {x2, x3},
SP ′1 = {x1, x2}, SP ′2 = {x1, x3}, SP ′3 = {x2, x3}.

x1 x3

x2 x3

x1 x2

x1 x1 x3 x3

x2 x3 x2 x3

x1 x1

x1 x1

x2

x3

x2 x3 x2

x1 x2 x1 x3 x2 x3

x1 x2 x1 x2

Fig. 8: Implementing fT = x1x2 +x1x3 +x2x3. (a): Lattice sites
with corresponding sets. (b): Lattice sites with corresponding
literals.

Figure 8 shows the implementation of the target function.
Grey sites represent sets having more than one literal; which
literal is selected for these sites is arbitrary. For example,
selecting x2, x3, x3 instead of x1, x1, x2 does not change fL

and gL. In order to implement the target function, we only
use column paths; these are shown by the solid lines. All other
paths are, in fact, redundant. Indeed there are a total of 9
top-to-bottom paths: the 3 column paths and 6 other paths;
however all other paths are covered by the column paths.

For example, the path x1x2x3 shown by the dashed line is
a redundant path covered by the column paths. The lattice
implements the top-to-bottom and left-to-right functions fL =
fT = x1x2+x1x3+x2x3 and gL = fD

T = x1x2+x1x3+x2x3,
respectively.

Example 3 Suppose that we are given the following target
function fT in ISOP form:

fT = x1x2x3 + x1x4 + x1x5.

We compute its dual fD
T in ISOP form:

fD
T = (x1)(x2 + x4 + x5)(x3 + x4 + x5).

fD
T = x1 + x2x4x5 + x3x4x5.

We have:

SP1 = {x1, x2, x3}, SP2 = {x1, x4}, SP3 = {x1, x5},
SP ′1 = {x1}, SP ′2 = {x2, x4, x5}, SP ′3 = {x3, x4, x5}.

x2 x4 x5

x3 x4 x5

x1

x2 x4 x5

x3 x4 x5

x1 x1

x2 x4

x1

x5

x3 x4 x5

x1 x5

x1 x1 x1

x1 x2 x3 x1 x4

Fig. 9: Implementing fT = x1x2x3 + x1x4 + x1x5. (a): Lattice
sites with corresponding sets. (b): Lattice sites with correspond-
ing literals.

Figure 9 shows the implementation of the target function.
In this example, all the intersection sets are singletons, so the
choice of which literal to assign is clear. The lattice implements
fL = fT = x1x2x3 + x1x4 + x1x5 and gL = fD

T = x1 +
x2x4x5 + x3x4x5.

We give another example, this one somewhat more
complicated.

Example 4 Suppose that fT and fD
T are given in ISOP form

as follows:

fT = x1x̄2x3 + x1x̄4 + x2x3x̄4 + x2x4x5 + x3x5 and
fD

T = x1x2x5 + x1x3x4 + x2x3x̄4 + x̄2x̄4x5.

Figure 10 shows the implementation of the target function.
Grey sites represent intersection sets having more than one
literal. For these sites, selection of the final literal is arbitrary.
The result is fL = fT = x1x̄2x3 +x1x̄4 +x2x2x̄4 +x2x4x5 +
x3x5 and gL = fD

T = x1x2x5 + x1x3x4 + x2x3x̄4 + x̄2x̄4x5.



5

x1 x1

x1 x1

x2

x3

x3 x4 x2

x1      
x2
x3

x2

x4

x5

x3

x2 x3

x2 x4 x4 x5 x5

x1
x4

x2      
x3
x4

x2      
x4
x5

x3
x5

x1 x2 x5

x1 x3 x4

x2 x3 x4

x2 x4 x5

Fig. 10: Implementing fT = x1x̄2x3+x1x̄4+x2x2x̄4+x2x4x5+
x3x5.

2.2 Proof of Correctness
We present a proof of correctness of the synthesis
method. Since our method does not enumerate paths, we
must answer the question: for the top-to-bottom lattice
function, how do we know that all paths other than
the column paths are redundant? The following theorem
answers this question. It pertains to the lattice functions
and their duals.

Theorem 1 If we can find two dual functions f and fD that
are implemented as subsets of all top-to-bottom and left-to-
right paths, respectively, then fL = f and gL = fD.

Before presenting the proof, we provide some examples
to elucidate the theorem.

Example 5 We analyze the two lattices shown in Figure 11.

Lattice (a): The top-to-bottom paths shown by the red
lines implement f = x1x2 + x̄1x3. The left-to-right paths
shown by the blue lines implement g = x1x3 + x̄1x2. Since
g = fD, we can apply Theorem 1: fL = f = x1x2 + x̄1x3

and gL = fD = x1x3 + x̄1x2. Relying on the theorem, we
obtain the functions without examining all possible paths.
Let us check the result by using the formal definition
of fL and gL, namely the OR of all corresponding
paths. Since there are 9 total top-to-bottom paths,
fL = x1x1x̄1 + x1x1x2x2 + x1x1x2x3x̄1 + x3x2x1x̄1 +
x3x2x2 + x3x2x3x̄1 + x3x3x̄1 + x3x3x2x2 + x3x3x2x1x̄1,
which is equal to x1x2 + x̄1x3. Thus all the top-to-
bottom paths but the paths shown by the red lines are
redundant. Since there are 9 total left-to-right paths,
gL = x1x3x3 + x1x3x2x3 + x1x3x2x2x̄1 + x1x2x3x3 +
x1x2x3 + x1x2x2x̄1 + x̄1x2x2x3x3 + x̄1x2x2x3 + x̄1x2x̄1,
which is equal to x1x3 + x̄1x2. Thus all the left-to-right
paths but the paths shown by the blue lines are redundant.
So Theorem 1 holds for this example.

Lattice (b): The top-to-bottom paths shown by the red lines
implement f = x1x2x3 +x1x4 +x1x5. The left-to-right paths

shown by the blue lines implement g = x1+x2x4x5+x3x4x5.
Since g = fD, we can apply Theorem 1: fL = f = x1x2x3 +
x1x4 + x1x5 and gL = fD = x1 + x2x4x5 + x3x4x5. Again,
we see that Theorem 1 holds for this example.

x5

x1 x1

x2 x4

x1

x5

x3 x4x1

x1 x3

x1 x2

x3

x3

x1 x2

Fig. 11: Examples to illustrate Theorem 1.

Proof of Theorem 1: If f(x1, x2, . . . , xk) = 1 then fL = 1.
From the definition of duality, if f(x1, x2, . . . , xk) = 0
then g(x̄1, x̄2, . . . , x̄k) = f̄(x1, x2, . . . , xk) = 1. This means
that there is a left-to-right path consisting of all 0’s;
accordingly, fL = 0. Thus, we conclude that fL = f .
Following the same argument for g, we conclude that
gL = fD. 2

Theorem 1 provides a constructive method for synthe-
sizing lattices with the requisite property, namely that
the top-to-bottom and left-to-right functions fT and fD

T

are duals, and each column path of the lattice imple-
ments a product of fT and each row path implements a
product of fD

T .
We begin by lining up the products of fT as the

column headings and the products of fD
T as the row

headings. We compute intersection sets for every lattice
site. We arbitrarily select a literal from each intersection
set and assign it to the corresponding site. The following
lemma and theorem explain why we can make such an
arbitrary selection.

Suppose that functions f(x1, x2, . . . , xk) and
fD(x1, x2, . . . , xk) are given in ISOP form such that

f = P1 + P2 + · · ·+ Pn and
fD = P ′1 + P ′2 + · · ·+ P ′m

where each Pi is a prime implicant of f , i = 1, . . . n, and
each P ′j is a prime implicant of fD, j = 1, . . . m. Again,
we use a set representation for the prime implicants:

Pi → SPi, i = 1, 2, . . . , n

P ′j → SP ′j , j = 1, 2, . . . ,m

where each SPi is the set of literals in the corresponding
product Pi and each SP ′j is the set of literals in the
corresponding product P ′j . Suppose that SPi and SP ′j
have zi and z′j elements, respectively. We first present a
property of dual Boolean functions from [7]:



6

Lemma 1 Dual pairs f and fD must satisfy the condition

SPi∩SP ′j 6= ∅ for every i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Proof: The proof is by contradiction. Suppose that
we focus on one product Pi from f and assign all its
literals, namely those in the set SPi, to 0. In this case
fD = 0. However if there is a product P ′j of fD such
that SP ′j ∩ SPi = ∅, then we can always make P ′j equal
1 because SP ′j does not contain any literals that have
been previously assigned to 0. If follows that fD = 1, a
contradiction.

Theorem 2 Assume f and fD are in ISOP form. For any
product Pi of f , there exist m non-empty intersection sets,
(SPi ∩ SP ′1), (SPi ∩ SP ′2), . . . , (SPi ∩ SP ′m). Among these
m sets, there must be at least zi single-element disjoint sets.
These single-element sets include all zi literals of Pi.

We can make the same claim for products of fD: for any
product P ′j of fD there exist n non-empty intersection sets,
(SP ′j ∩SP1), (SP ′j ∩SP2), . . . , (SP ′j ∩SPn). Among these n
sets there must be at least z′j single-element disjoint sets that
each represents one of the z′j literals of P ′j .

Before proving the theorem we elucidate it with ex-
amples.

Example 6 Suppose we are given a target function fT and
its dual fD

T in ISOP form such that

fT = x1x̄2 + x̄1x2x3 and fD
T = x1x2 + x1x3 + x̄1x̄2.

Thus,

SP1 = {x1, x̄2}, SP2 = {x̄1, x2, x3},
SP ′1 = {x1, x2}, SP ′2 = {x1, x3}, SP ′3 = {x̄1, x̄2}.

Let us apply Theorem 2 for SP2 (z2 = 3).

SP2∩SP ′1 = {x2}, SP2∩SP ′2 = {x3}, SP2∩SP ′3 = {x̄1}.

Since these three sets are all the single-element disjoint sets of
the literals of SP2, Theorem 2 is satisfied.

Example 7 Suppose we are given a target function fT and
its dual fD

T in ISOP form such that

fT = x1x2 + x1x3 + x2x3 and fD
T = x1x2 + x1x3 + x2x3.

Thus,

SP1 = {x1, x2}, SP2 = {x1, x3}, SP3 = {x2, x3},
SP ′1 = {x1, x2}, SP ′2 = {x1, x3}, SP ′3 = {x2, x3}.

Let us apply Theorem 2 for SP ′1 (z′1 = 2).

SP ′1∩SP1 = {x1, x2}, SP ′1∩SP2 = {x1}, SP ′1∩SP3 = {x2}.

Since {x1} and {x2}, the single-element disjoint sets of the
literals of SP ′1, are among these sets, Theorem 2 is satisfied.

Proof of Theorem 2: The proof is by contradiction. Con-
sider a product Pi of f such that SPi = {x1, x2, . . . , xzi

}.

For one of the elements of SPi, say x1, assume that none
of the intersection sets (SPi∩SP ′1), (SPi∩SP ′2), . . . , (SPi∩
SP ′m) are {x1}. This means that if we extract x1 from
SPi then the new set {x2, . . . , xzi

} also has non-empty
intersections with every SP ′j . Note that that the product
x2x3 . . . xzi is one of the products of f . This product
covers Pi. However in an ISOP there is no product that
covers another. So we have a contradiction. 2

From Lemma 1 we know that none of the lattice sites
will have an empty intersection set. Theorem 2 states that
the intersection sets of a product include single-element
sets for all of its literals. So the corresponding column
or row has always all literals of the product regardless
of the final literal selections from multiple-element sets.
Thus we obtain a lattice whose column paths and row
paths implement fT and fD

T , respectively.

3 A LOWER BOUND ON THE LATTICE SIZE

In this section, we propose a lower bound on the size of
any lattice implementing a Boolean function. Although
it is a weak lower bound, it allows us to gauge the
effectiveness of our synthesis method. The bound is
predicated on the maximum length of any path across
the lattice. The length of such a path is bounded from
below by the maximum number of literals in terms of
an ISOP expression for the function.

3.1 Preliminaries
Definition 6 Let the weight of an SOP expression be the
maximum number of literals in terms of the expression.

A Boolean function might have several different ISOP
expressions and these might have different weights.
Among all the different expressions, we need the one
with the smallest weight for our lower bound. (We need
only consider ISOP expressions; every SOP expression is
covered by an ISOP expression of equal or lesser weight.)

Consider a target Boolean function fT and its dual
fD

T , both in ISOP form. We will use v and y to denote
the minimum weights of fT and fD

T , respectively. For
example, if v = 3 and y = 5, this means that every ISOP
expression for fT includes terms with 3 literals or more,
and every ISOP expression for fD

T includes terms with 5
literals or more. Our lower bound, described in the next
section by Theorem 4, consists of inequalities on v and
y. We first illustrate how it works with an example.

Example 8 Consider two target Boolean functions fT1 =
x1x2x3+x1x4+x1x5 and fT2 = x1x2x3+x̄1x̄2x4+x2x3x4,
and their duals fD

T1 = x1 + x2x4x5 + x3x4x5 and fD
T2 =

x1x4 + x̄1x2 + x̄2x3. These expressions are in all ISOP form
with minimum weights. Since each expressions consists of
three products, the synthesis method described in Section 2
implements each target function with a 3× 3 lattice.

Examining the expressions, we see that the weights of fT1

and fT2 are v1 = 3 and v2 = 3, respectively, and the weights



7

of fD
T1 and fD

T2 are y1 = 3 and y2 = 2, respectively. Our
lower bounds based on these values are 3 × 3 for fT1 and
3 × 2 for fT2. Thus, the lower bound for fT2 suggests that
our synthesis method might not be producing optimal results.
Indeed, Figure 12 shows minimum-sized lattices for for fT1

and fT2. Here the 3× 2 lattice for fT2 was obtained through
exhaustive search.

x x

x x

x x

x

x

x

x

x

x

x x x

Fig. 12: Minimum-sized lattices (a): fL = fT1 = x1x2x3 +
x1x4 + x1x5. (b): fL = fT2 = x1x2x3 + x̄1x̄2x4 + x2x3x4.

Since we implement Boolean functions in terms of top-
to-bottom connectivity across the lattice, it is apparent
that we cannot implement a target function fT with top-
to-bottom paths consisting of fewer than v literals, where
v is the minimum weight of an ISOP expression for
fT . The following theorem explains the role of y, the
minimum weight of fD

T . It is based on eight-connected
paths.

Definition 7 An eight-connected path consists of both
directly and diagonally adjacent sites.

An example is shown in Figure 13. Here the paths
x1x4x8 and x3x6x5x8 shown by red and blue lines are
both eight-connected paths; however only the blue one
is four-connected.

Recall that fL and gL are defined as the OR of all
four-connected top-to-bottom and left-to-right paths, re-
spectively. (A lattice implements a given target function
fT if fL = fT .) We define fL−8 and gL−8 to be the OR of
all eight-connected top-to-bottom and left-to-right paths,
respectively.

Fig. 13: A lattice with eight-connected paths.

Theorem 3 The functions fL and gL−8 are duals. The func-
tions fL−8 and gL duals.

Before proving the theorem, we elucidate it with an
example.

Example 9 Consider the lattice shown in Figure 14. Here
fL is the OR of 3 top-to-bottom four-connected paths x1x4,
x2x5, and x3x6; gL is the OR of 4 left-to-right four-connected
paths x1x2x3, x1x2x5x6, x4x5x2x3, and x4x5x6; fL−8 is
the OR of 7 eight-connected top-to-bottom paths x1x4, x1x5,
x2x4, x2x5, x2x6, x3x5, and x3x6; and gL−8 is the OR of 8
eight-connected left-to-right paths x1x2x3, x1x2x6, x1x5x3,
x1x5x6, x4x2x3, x4x2x6, x4x5x3, and x4x5x6. We can easily
verify that fL = gD

L−8 and fL−8 = gD
L . Accordingly,

Theorem 3 holds true for this example.

Fig. 14: A 2×3 lattice with assigned literals.

Proof of Theorem 3: We consider two cases, namely fL =
1 and fL = 0.

fL gL-8 

fL gL-8 

Fig. 15: Conceptual proof of Theorem 3.

Case 1: If fL(x1, x2, . . . , xk) = 1, there must be a
four-connected path of 1’s between the top and bottom
plates. If we complement all the inputs (1 → 0, 0 →
1), these four-connected 1’s become 0’s and vertically



8

separate the lattice into two parts. Therefore no eight-
connected path of 1’s exists between the left and right
plates; accordingly, gL−8(x̄1, x̄2, . . . , x̄k) = 0. As a result
ḡL−8(x̄1, x̄2, . . . , x̄k) = fL(x1, x2, . . . , xk) = 1

Case 2: If fL(x1, x2, . . . , xk) = 0, there must
be an eight-connected path of 0’s between the
left and right plates. If we complement all the
inputs, these eight-connected 0’s become 1’s;
accordingly, gL−8(x̄1, x̄2, . . . , x̄k) = 1. As a result
ḡL−8(x̄1, x̄2, . . . , x̄k) = fL(x1, x2, . . . , xk) = 0

Figure 15 illustrates the two cases. Taken together, the
two cases prove that fL and gL−8 are duals. With inverse
reasoning we can prove that fL−8 and gL are duals. 2

Theorem 3 tells us that the products of fD
T are im-

plemented with eight-connected left-to-right paths. Now
consider y, the weight of fD

T . We know that we cannot
implement fD

T with eight-connected right-to-left paths
having fewer than y literals. Consider v, the weight
of fT . We know that we cannot implement fT with
four-connected top-to-bottom paths having fewer than
v literals.

Returning to the functions in Example 8, we can now
prove that lower bounds on the lattice sizes are 9 (3× 3)
for fT1, and 6 (3 × 2) for fT2. Since v1 = 3 and y1 = 3
for fT1, a 3× 3 lattice is a minimum-size lattice that has
four-connected top-to-bottom and eight-connected left-
to-right paths of at least 3 literals, respectively. Since v2 =
3 and y2 = 2 for fT2, a 3 × 2 lattice is a minimum-size
lattice that has four-connected top-to-bottom and eight-
connected left-to-right paths of at least 3 and 2 literals,
respectively.

Based on these preliminaries, we now formulate the
lower bound.

3.2 Lower Bound
Consider a target Boolean function fT and its dual fD

T ,
both in ISOP form. Recall that v and y are defined as the
minimum weights of fT and fD

T , respectively. Our lower
bound is based on the observation that a minimum-size
lattice must have a four-connected top-to-bottom path
with at least v literals and an eight-connected left-to-
right path with at least y literals. Since the functions are
in ISOP form, all products of fT and fD

T are irredundant,
i.e., not covered by other products. Therefore, we need
only consider irredundant paths:

Definition 8 A path between plates is irredundant if re-
moving any site from the path does not result in another path
between plates.

We bound the length of irredundant paths. For exam-
ple, the length of an eight-connected left-to-right path
in a 3 × 3 lattice is at most 3. Accordingly, no Boolean
function with y greater than 3 can be implemented by
a 3 × 3 lattice. Figure 16 shows eight-connected left-to-
right paths in a 3 × 3 lattice. The path in (a) consists of

3 sites. The path in (b) consists of 4 sites; however it
is a redundant path – removing the site indicated by ×
results in the path in (a).

The following simple lemmas pertain to irredundant
paths of a lattice.

Fig. 16: Lattices with (a) irredundant paths and (b) redundant
paths.

Lemma 2 An irredundant top-to-bottom path of a lattice
contains exactly one site from the topmost row and exactly
one site from the bottommost row. An irredundant left-to-right
path of a lattice contains exactly one site from the leftmost
column and exactly one site from the rightmost column.

Proof: All sites in the first row of a lattice are
connected through the top plate. Therefore we do not
need a path to connect any two sites in this row; such
a path is redundant. Similarly for the last row. Similarly
for the first and last columns.

Lemma 3 An irredundant four-connected path of a lattice
contains at most 3 of 4 sites in any 2 × 2 sub-lattice. An
irredundant eight-connected path of a lattice contains at most
2 of 4 sites in any 2× 2 sub-lattice.

Proof: In order to connect any 2 sites of a 2× 2 sub-
lattice with a four-connected path, we need at most 3
sites of the sub-lattice. Similarly, in order to connect any
2 sites of a 2×2 sub-lattice with an eight-connected path,
we need at most 2 sites of the sub-lattice.

Figure 17 shows examples illustrating Lemma 3. The
lattice in (a) has a four-connected top-to-bottom path.
This path contains 4 of the 4 sites in the 2 × 2 sub-
lattice encircled in red. Lemma 3 tells us that the path
in (a) is redundant. Indeed, the site marked by × can be
removed. The lattice in (b) has an eight-connected left-
to-right path. This path contains 3 of 4 sites in the 2× 2
sub-lattice encircled in red. Lemma 3 tells us that the
path in in (b) is redundant. Indeed the site marked by
× can be removed.

From Lemmas 2 and 3, we have the following theo-
rem consisting of two inequalities. The first inequality
states that the weight of fT is equal to or less than the
maximum number of sites in any four-connected top-to-
bottom path. The second inequality states that the weight



9

Fig. 17: Examples to illustrate Lemma 3.

of fD
T is less than or equal to the maximum number of

sites in any eight-connected left-to-right path.

Theorem 4 If a target Boolean function fT is implemented
by an R × C lattice then the following inequalities must be
satisfied:

v ≤

{
R, if R ≤ 2 or C ≤ 1

3
⌈

R−2
2

⌉ ⌈
C
2

⌉
+ 2+(−1)R+(−1)C

2 , if R > 2 and C > 1,

y ≤

{
C, if R ≤ 3 or C ≤ 2

2
⌈

R
2

⌉ ⌈
C−2

2

⌉
+ 2+(−1)R+(−1)C

2 , if R > 3 and C > 2,

where v and y are the minimum weights of fT and its dual
fD

T , respectively, both in ISOP form.

Proof: If R and C are both even then all irredundant
top-to-bottom and left-to-right paths contain at most
3
4 (R − 2)C + 2 and 2

4R(C − 2) + 2 sites, respectively;
this follows directly from Lemmas 2 and 3. If R or C
are odd then we first round these up to the nearest even
number. The resulting lattice contains at least one extra
site (if either R or C but not both are odd) or two extra
sties (if both R and C are odd). Accordingly, we compute
the maximum number of sites in top-to-bottom and left-
to-right paths and subtract 1 or 2. This calculation is
reflected in the inequalities.

The theorem proves our lower bound. Table 1 shows
the calculation of the bound for different values of v and
y up to 10.

4 EXPERIMENTAL RESULTS

We report synthesis results for a few standard bench-
mark circuits [9]. We treat each output of a benchmark
circuit as a target function. Table 2 lists values for n
and m, the number of products for each target function
fT and its dual fD

T , respectively. These were obtained
through sum-of-products minimization using the pro-
gram Espresso [10]. (The runtimes are simply those for
SOP minimization.)

For the lower bound calculation, we obtained values
of v and y, the minimum weights of fT and fD

T , as
follows: first we generated prime implicant tables for the

HH
HHv

y 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 12 15 20 20 20 24

4 4 6 9 12 12 15 20 20 20 24

5 5 8 9 12 12 15 20 20 20 24

6 6 9 9 12 12 15 20 20 20 24

7 7 10 12 12 12 15 20 20 20 24

8 8 12 15 15 15 15 20 20 20 24

9 9 14 15 15 15 15 20 20 20 24

10 10 14 15 15 15 15 20 20 20 24

TABLE 1: Lower bounds on the lattice size for different
values of v and y.

target functions and their duals using Espresso with the
“-Dprimes” option; then we deleted prime implicants
one by one, beginning with those that had the most
literals, until we obtained an expression of minimum
weight. (Again, the runtimes in the table are simply
those for SOP minimization.) Given values of v and y,
the lower bound is computed from the inequalities in
Theorem 4.

Examining the numbers in Table 2, we see that, often,
the synthesized lattice size matches the lower bound. In
these cases, our results are optimal. However for most of
the Boolean functions, especially those with larger values
of n and m, the lower bound is much smaller than the
synthesized lattice size. This is not surprising since the
lower bound is weak, formulated based on path lengths.

5 DISCUSSION

The two-terminal switch model is fundamental and
ubiquitous in electrical engineering [11]. Either implicitly
or explicitly, nearly all logic synthesis methods target cir-
cuits built from independently controllable two-terminal
switches (i.e., transistors). And yet, with the advent of
novel nanoscale technologies, synthesis methods target-
ing lattices of multi-terminal switches are apropos. Our
treatment is at a technology-independent level; neverthe-
less we comment that our synthesis results are applicable
to technologies such as nanowire crossbar arrays with
independently controllable crosspoints [3].

In this paper, we presented a synthesis method tar-
geting regular lattices of four-terminal switches. Signifi-
cantly, our method assigns literals to lattice sites without
enumerating paths. It produces lattice sizes that are
linear in the number of products of the target Boolean
function. The time complexity of our synthesis algorithm
is polynomial in the number of products. Comparing
our results to a lower bound, we conclude that the
synthesis results are not optimal. However, this is hardly
surprising: at their core, most logic synthesis problems



10

Circuit n m Lattice size v y Lower bound
alu1 3 2 6 2 3 6
alu1 2 3 6 3 2 6
alu1 1 3 3 3 1 3
clpl 4 4 16 4 4 12
clpl 3 3 9 3 3 9
clpl 2 2 4 2 2 4
clpl 6 6 36 6 6 15
clpl 5 5 25 5 5 12

newtag 8 4 32 3 6 15
dc1 4 4 16 3 3 9
dc1 2 3 6 3 2 6
dc1 4 4 16 3 4 12
dc1 4 5 20 4 3 9
dc1 3 3 9 2 3 6

misex1 2 5 10 4 2 6
misex1 5 7 35 4 4 12
misex1 5 8 40 5 4 12
misex1 4 7 28 5 3 9
misex1 5 5 25 4 4 12
misex1 6 7 42 4 4 12
misex1 5 7 35 4 3 9

ex5 1 3 3 3 1 3
ex5 1 5 5 5 1 5
ex5 1 4 4 4 1 4
ex5 1 7 7 7 1 7
ex5 1 8 8 8 1 8
ex5 1 6 6 6 1 6
ex5 8 4 33 3 6 15
ex5 10 4 40 3 8 20
ex5 7 3 21 3 7 20
ex5 7 3 21 3 6 15
ex5 8 2 16 2 8 16
ex5 9 4 36 3 8 20
ex5 8 2 16 2 7 14
ex5 12 6 72 4 7 20
ex5 14 8 112 4 7 20
ex5 7 2 14 2 7 14
ex5 6 3 18 3 6 15
ex5 6 2 12 2 6 12
ex5 10 7 70 3 7 20
ex5 6 6 36 3 6 15
ex5 12 10 120 4 8 20
ex5 14 8 112 5 7 20
ex5 8 5 40 3 7 20
ex5 10 8 80 3 7 20
ex5 12 7 84 4 7 20
ex5 9 3 27 3 8 20
ex5 5 2 10 2 5 10
b12 4 6 24 4 3 9
b12 7 5 35 4 4 12
b12 7 6 42 5 4 12
b12 4 2 8 2 2 4
b12 4 2 8 2 4 8
b12 5 1 5 1 5 5
b12 9 6 54 6 4 12
b12 6 4 24 4 6 15
b12 7 2 14 2 7 14

newbyte 1 5 5 5 1 5
newapla2 1 6 6 6 1 6

c17 3 3 9 2 3 6
c17 4 2 8 2 2 4

mp2d 11 1 11 1 11 11
mp2d 8 6 48 5 8 20
mp2d 10 5 50 4 10 24
mp2d 6 10 60 9 3 15
mp2d 1 5 5 5 1 5
mp2d 3 6 18 5 2 8
mp2d 1 8 8 8 1 8
mp2d 5 1 5 1 5 5

TABLE 2: Proposed lattice sizes and lower bounds on
the lattice sizes for the output functions of benchmark
circuits.

are computationally intractable; the solutions that are
available are based on heuristics. Furthermore, good
lower bounds on circuit size are notoriously difficult to
establish. In fact, such proofs are related to fundamental
questions in computer science, such as the separation
of the P and NP complexity classes. (To prove that
P 6= NP it would suffice to find a class of problems in
NP that cannot be computed by a polynomially sized
circuit [12].)

A future direction is to extend the results in this paper
to lattices of eight-terminal switches, and then to 2k-
terminal switches, for arbitrary k. Another direction is
to study methods for synthesizing robust computation in
lattices with random connectivity. We have been exploring
methods based on the principle of percolation [13].

A significant tangent for this work is its mathemat-
ical contribution: lattice-based implementations present
a novel view of the properties of Boolean functions. We
are curious to study the applicability of these properties
to the famous problem of testing whether two monotone
Boolean functions in ISOP form are dual. This is one of
the few problems in circuit complexity whose precise
tractability status is unknown [14].

ACKNOWLEDGMENTS

We would like to thank Ivo Rosenberg for his contribu-
tions.

REFERENCES

[1] M. Altun and M. D. Riedel, “Lattice-based computation of
Boolean functions,” in Design Automation Conference, 2010, pp.
609–612.

[2] C. E. Shannon, “A symbolic analysis of relay and switching
circuits,” Transactions of the AIEE, vol. 57, pp. 713–723, 1938.

[3] A. DeHon, “Nanowire-based programmable architectures,” ACM
Journal on Emerging Technologies in Computing Systems, vol. 1, no. 2,
pp. 109–162, 2005.

[4] Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen et al.,
“Two-dimensional molecular electronics circuits,” ChemPhysChem,
vol. 3, no. 6, pp. 519–525, 2002.

[5] A. Khitun, M. Bao, and K. L. Wang, “Spin wave magnetic
nanofabric: A new approach to spin-based logic circuitry,” IEEE
Transactions on Magnetics, vol. 44, no. 9, pp. 2141–2152, 2008.

[6] Y. Zomaya, “Molecular and nanoscale computing and technol-
ogy,” in Handbook of Nature-Inspired and Innovative Computing.
Springer, 2006, ch. 14, pp. 478–520.

[7] M. L. Fredman and L. Khachiyan, “On the complexity of dualiza-
tion of monotone disjunctive normal forms,” Journal of Algorithms,
vol. 21, no. 3, pp. 618–628, 1996.

[8] T. Ibaraki and T. Kameda, “A theory of coteries: Mutual exclu-
sion in distributed systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 7, pp. 779–794, 1993.

[9] B. from the 1991 International Work-
shop on Logic Synthesis available at
http://www.cbl.ncsu.edu:16080/benchmarks/LGSynth93/.

[10] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984.

[11] R. E. Bryant, “A switch-level model and simulator for MOS digital
systems,” IEEE Transactions on Computers, vol. 33, no. 2, pp. 160–
177, 1984.

[12] I. Wegener, “Lower bounds on circuit complexity,” in The Com-
plexity of Boolean Functions. John Wiley & Sons, 1987, ch. 5, pp.
119–144.



11

[13] M. Altun, M. D. Riedel, and C. Neuhauser, “Nanoscale digital
computation through percolation,” in Design Automation Confer-
ence, 2009, pp. 615–616.

[14] T. Eiter, K. Makino, and G. Gottlob, “Computational Aspects of
Monotone Dualization: A Brief Survey,” Discrete Applied Mathe-
matics, vol. 156, no. 11, pp. 1952–2005, 2008.


	Introduction
	Definitions

	Synthesis Method
	Algorithm
	Proof of Correctness

	A Lower Bound on the Lattice Size
	Preliminaries
	Lower Bound

	Experimental Results
	Discussion
	References

