
July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

1

Binary Counting with Chemical Reactions

Aleksandra Kharam, Hua Jiang, Marc Riedel, and Keshab Parhi

Electrical and Computer Engineering, University of Minnesota
Minneapolis, MN 55455

http://cctbio.ece.umn.edu
E-mail: {veden002, hua, mriedel, parhi}@umn.edu

This paper describes a scheme for implementing a binary counter with chemical reactions. The value
of the counter is encoded by logical values of “0” and “1” that correspond to the absence and presence of
specific molecular types, respectively. It is incremented by one every time any quantity of a trigger type
is injected. The system is “self-timed:” the rate at which the trigger type is injected does not matter. The
system consumes the trigger type and then the binary value can be incremented again. Unlike all previous
schemes for chemical computation, our scheme is dependent only on coarse rate categories for the reactions
(“fast” and “slow”). Given such categories, the computation is exact and independent of the specific reac-
tion rates. Synchronization of the phases of the computation is achieved through a three-phase protocol that
transfers quantities between chemical types based on the absence of other types. We validate our designs
through transient stochastic simulations of the chemical kinetics. Although conceptual for the time being,
our methodology has potential applications in domains of synthetic biology such as biochemical sensing and
drug delivery. We are exploring DNA-based computation via strand displacement as a possible experimental
chassis.

1. Introduction

In the nascent field of synthetic biology, researchers are striving to create biological systems
with functionality not seen in nature. Examples of such research include Salmonella that secretes
spider silk proteins,1 yeast that degrades biomass into ethanol,2 and E. coli that produces antimalarial
drugs.3

The field aims to apply engineering methods in a deliberate way.4 It also suggests a new con-
structive approach to validating science. As the great Caltech physicist Richard Feynman stipulated,
“If I can’t create it, I don’t understand it.” Understanding is achieved by constructing and testing
simplified systems from the bottom up, teasing out and nailing down fundamental principles in the
process. As Drew Endy, an eloquent proponent of synthetic biology, describes it: natural biological
systems are fiendishly complicated; instead of endlessly probing them with experiments, in some
cases, we are better off rebuilding the functionality from the ground up. This provides engineered
“surrogates” that are easier to understand and interact with.

We bring a particular mindset to the problem of synthesizing new biological functions. We tackle
synthesis at a conceptual level, working with abstract chemical types. Working at this level, we im-
plement computational constructs, that is to say, chemical reaction networks that compute specific
outputs as a function of inputs. Here we aim for efficient and robust constructs that are rate inde-
pendent. Then we map the design onto specific chemical substrates. We are exploring DNA-based
computation via strand displacement as a possible experimental chassis for the ideas in this paper.5

The analogy for this approach is the design flow for digital electronics. There different designs
are systematically explored at a technology-independent level, in terms of Boolean functions. Once
the best design is found, it is mapped to specific technology libraries in silicon.6

http://cctbio.ece.umn.edu

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

2

In our prior and related work, we have described a variety of constructs for chemical reaction net-
works: logical operations such copying, comparing and incrementing/decrementing;7 programming
constructs such as “for” and “while” loops;8 arithmetic operations such as multiplication, exponen-
tiation and logarithms;7,8 and signal processing operations such as filtering.9 The framework that we
have adopted is largely due to the group at Caltech.10–12

In this paper, we present a scheme for implementing a binary counter with chemical reactions.
The value of the counter is encoded by logical values of “0” and “1” that correspond to the ab-
sence and presence of specific molecular types, respectively. It is incremented by one every time any
quantity of a trigger type is injected. The system is “self-timed:” the rate at which the trigger type
is injected does not matter. The system consumes the trigger type and then the binary value can be
incremented again. Unlike all previous schemes for chemical computation, our scheme is dependent
only on coarse rate categories for the reactions (“fast” and “slow”). Given such categories, the com-
putation is exact and independent of the specific reaction rates. Synchronization of the phases of the
computation is achieved through a three-phase protocol that transfers quantities between chemical
types based on the absence of other types.

This paper is organized as follows. In Section 2, we summarize the main principles and the
basic algorithm for our implementation of the binary counter. In Section 3, we introduce some
specific concepts that we use, namely the concepts of “prereactants” and “absence indicators.” We
also introduce the essential synchronization mechanism that we use, namely the “red-green-blue”
(RGB) scheme. Building on these concepts, we present the design of the molecular counter. In
Section 4, we analyze our design with transient stochastic simulation. Finally, in Section 5, we
suggest possible improvements to our design and we discuss our on-going work in implementing
the scheme with DNA strand-displacement reactions.

1.1. Chemical Model

We adopt the model of discrete, stochastic chemical kinetics.13 We assume that the system is
well-stirred; accordingly, we only track the quantities of the different molecular types. These are
whole numbers (i.e., non-negative integers). Reactions fire and alter these quantities by discrete,
integer amounts. Consider the reaction

X1
fast−→ X2 + X3. (1)

When this reaction fires, one molecule of X1 is consumed, one of X2 is produced, and one of X3 is
produced. (Accordingly, X1 is called a reactant and X2 and X3 the products.)

Given several reactions, the probability of each firing is proportional both to its rate and to the
quantities of its reactants present. The challenge in setting up computation with chemical reactions
is that they execute asynchronously and at variable rates, dependent on factors such as temperature.
In spite of this, we aim to implement computation that does not depend on the rates. We will only
speak of rates in qualitative terms, e.g., “fast” vs. “slow” (in our notation, such qualitative rates are
listed above the arrows for reactions.)

The evolution of a chemical system over time can be characterized through stochastic simulation.
First proposed by Gillespie, stochastic simulation has become the workhorse of computational biol-
ogy – the equivalent, one might say, of SPICE for electrical engineering.14 Such simulation tracks

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

3

integer quantities of the molecular species, executing reactions at random based on propensity cal-
culations. Repeated trials are performed and the probability distribution of different outcomes is
estimated by averaging the results.10,15

2. Counting in Binary

We first review some of the algorithmic principles of counting in binary. Then we present an
intuitive description of our approach to implementing a molecular binary counter.

Z Y X

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
...

...
...

Fig. 1. Sequence of values in a three-bit bi-
nary counter.

Molecular Binary Counter

Increment the binary

number: produce and

consume X, Y, and Z.

Consume Xinj.

Inject molecular type Xinj

Fig. 2. Basic functionality of the
molecular counter.

2.1. General Principles

Figure 1 lists the binary numbers that a 3-bit binary counter cycles through, starting at “000” and
ending at “111.”

(1) Every time the binary count incremented, the least significant (i.e., right-most) bit is flipped.
For instance, in the sequence 000 → 001 → 010 → 011 → 100 → 101, note that least significant
bit (underlined) alternates: 0→ 1→ 0→ 1→ 0→ 1.

(2) Every time the binary count is incremented, exactly one bit changes from “0” to “1”. (However,
several bits may change from “1” to “0.”)
For instance, in the sequence 000 → 001 → 010 → 011 → 100 → 101, the bits that change from
“0” to “1” are underlined. Note that there is exactly one such bit each time. (As will be discussed
in Section 3, this principle is important for synchronizing our molecular counter.)

(3) When the binary count is incremented, a given bit changes from “0” to “1” only if all bits of
lesser significance (i.e., all bits to the right of it) are “1.”
For instance, in the sequence 000 → 001 → 010, the second bit changes from “0” to “1” when
the first bit was “1.” In the sequence 011 → 100 → 101 the third bit changes from “0” to “1”
when the first and second bits were “1.”

2.2. Towards a Molecular Binary Counter

Throughout this paper, the exposition will be in terms of a three-bit binary counter. However,
the ideas can readily be generalized to an n-bit counter. We encode the binary values of “0” and

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

4

“1” by the presence or absence of specific molecular types, respectively. For the binary sequence in
Figure 1, we use the types X, Y and Z. (We will call these “bit types.”) For instance, if types X and
Z are present, while type Y is absent, the corresponding binary number is “101”.

Figure 2 shows the basic functionality of our molecular counter. Every time we want to increment
it, we inject some amount of a “trigger” type Xinj. The system consumes Xinj and increments the
binary value specified by the quantities of X, Y and Z. Once all the molecules of Xinj have been
consumed, the counter can be incremented again.

Tables 2 and 3 specify the set of chemical reactions for our three-bit counter. In order to elucidate
the final design, we will provide a succession of design refinements:

(1) We start with a simple intuitive set of reactions, ignoring issues such as synchronization (Sec-
tion 2.3).

(2) We introduce two specific concepts that we use to implement the counter: the concept of “pre-
reactants” and that of “absence indicators” (Section 3.1).

(3) We introduce our essential synchronization mechanism, the so-called “red-green-blue” (RGB)
scheme (Section 3.2).

(4) Finally, we provide the full design of the counter, consisting of 24 chemical reactions (Sec-
tions 3.3).

2.3. Intuitive Model

X0 1

Produce X

Y0 1

Produce Y

Z0 1

Produce Z

Restart

Counter

Inject Xinj

Start Counter

Consume Y

Consume X

Consume Z

Fig. 3. Basic algorithm for the molecular counter.

A molecular counter cannot directly set bits
to “0” or to “1”; rather the functionality much be
achieved by reactions that produce and consume
the molecular types corresponding to these bits.
Call the three bits of the counter, the high, middle
and low bits, encoded by the presence/absence of
types X, Y and Z, respectively. The low bit is set
to “1” by producing molecules of X whenever the
type Xinj is injected into the system:

Xinj → X. (2)

The middle bit is set to “1” by producing
molecules of Y whenever the type X is present:

X → Y. (3)

The high bit is set to “1” by producing molecules
of Z whenever both types X and Y present:

X + Y → Z. (4)

Note that, in each of these reactions, the system consume molecules of X, Y and Z, reseting the cor-
responding bits to “0.” When molecules of all three types X, Y and Z are present, the corresponding
binary number is “111”. The counter is reset:

X + Y + Z → ∅. (5)

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

5

(The symbol ∅ as a product indicates “nothing”, meaning that the type degrades into products that
are no longer tracked or used.)

A flowchart for the algorithm that we use is given in Figure 3. In the figure, decisions to produce
and consume molecular types are made according to the presence and absence of types. (As we
refine the design, we will have to implement these “decisions” through chemical reactions.) Let’s
assume the current binary number is set to “101”. This number corresponds to the absence of Y and
the presence of X and Z. Suppose that we inject the trigger type Xinj; we move to the first decision
box. Since X is present, we do not produce more of it. We consume molecules of X and move to the
next decision box. Here we check for the presence of type Y . Since Y is absent, we move to the left
and produce molecules of Y . With the absence of X and the presence of Y and Z, the binary number
has changed to “110”. Next we return to “idle state,” waiting for the next injection.

3. Synchronization

The challenge in setting up the molecular counter is that all the chemical reactions fire asyn-
chronously. Each reaction starts producing its products as soon as its reactants are available. If these
products participate as reactants in other reactions, then they immediately start getting consumed.
Accordingly, with Reactions 2–5, we will not get a binary counter, encoded by the presence and
absence of X, Y and Z. Rather, we will get a jumble of all of these. In particular, note that with
Reaction 3, Y is produced from X. As soon as molecules of Y are available, Reaction 4 starts
consuming molecules of X and Y to produce molecules of Z. This contradict the second principle
described in Section 2.1: we should only change one bit from “0” to “1” in each increment operation.
To mitigate against this issue, we introduce additional molecular types called “prereactants.” We also
introduce “absence indicator” types to coordinate the transfer between prereactants and reactants.

3.1. Prereactants and Absence Indicators

We use the following notation to describe these concepts. For each bit i of the counter,

(1) Qi is a bit type corresponding to ith bit. (For our three-bit molecular counter, we have Q1 = X,
Q2 = Y and Q3 = Z.)

(2) aqi is an absence indicator type for type Qi. (For our three-bit molecular counter, we have
aq1 = ax, aq2 = ay and aq3 = az.)

(3) Qpi is a prereactant type for Qi. (For our three-bit molecular counter, we have Qp1 = Xp,
Qp2 = Yp and Qp3 = Zp.)

(4) We set Xp = Xinj: the trigger type is the first prereactant.

All the absence indicators aqi are produced continuously:

∅→ aqi; (6)

Here the symbol ∅ as a reactant indicates that the reaction does not alter the quantity of the reactant
types, perhaps because the quantity of these is large or replenishable. If Qi is present, then its absence
indicator aqi is destroyed:

aqi + Qi → Qi. (7)

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

6

However, if Qi is absent, then aqi persists, so its presence indicates the absence of Qi, as required. If
both a prereactant Qpi and the absence indicator aqi for the i-th bit are present, we produce type Qi:

aqi + Qpi → Qi. (8)

Finally, the prereactant Qp(i+1) for the (i + 1)-st bit is produced if both the prereactant Qpi and the
type Qi for the i-th bit are present:

Qi + Qpi → Qp(i+1). (9)

X0 1

Y0

Z0 1

Inject Xinj=Xp

Start

1

Produce X

Produce Y

Produce Z
Restart Counter

XXa px →+

YYa py →+

ZZa pz →+ ∅→+ pZZ

XXa

a

x

x

→+
→∅

YYa

a

y

y

→+

→∅

ZZa

a

z

z

→+
→∅

Produce Yp

pp YXX →+

Produce Zp

pp ZYY →+

Fig. 4. Modified algorithm for the molecular counter, with prereactants and absence indicators.

Table 1 lists the corresponding reactions for our three-bit counter in terms of the bit types X, Y

and Z instead of generic Qi’s. Figure 4 shows a modified version of the flowchart in Figure 3, this
time with prereactants and absence indicators.

3.2. Three-Phase Synchronization

Including absence indicators and prereactants establishes an order for the transfers of molecular
quantities in the counter, but we need a mechanism to ensure that each transfer completes before the
next one begins. As indicated on the left-hand side Figure 5, we must ensure that the accumulation
or destruction of the absence indicator completes before the production of the bit type begins; in
turn, we must ensure that the production of the bit type completes before the production of the next

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

7

Table 1. Reactions for the molecular counter, with prereactants and absence indi-
cators.

Qi Z Y X
1 ∅→ aqi ∅→ az ∅→ ay ∅→ ax

aqi + Qi → Qi az + Z → Z ay + Y → Y ax + X → X

2 aqi + Qpi → Qi az + Zp → Z ay + Yp → Y ax + Xp → X

3 Qi + Qpi → Qp(i+1) Z + Zp → ∅ Y + Yp → Zp X + Xp → Yp

prereactant begins; and so on. Similarly, as indicated on the right-hand side of Figure 5, we must
ensure that the bit types X, Y and Z are not produced simultaneously.

Accumulation

or destruction

of absence

indicator

Production of

next prereactant

Production of bit

type Z

Production of bit

type

Production of bit

type Y

Production of bit

type X

Fig. 5. Sequence of reactions for the molecular counter.

Red Green

Blue

b

rg

Fig. 6. The three-phase transfer
scheme.

We must turn the two “dials” shown in Figure 5 simultaneously. To do so we use a three-phase
synchronization protocol that we call “Red-Green-Blue” (RGB). This is illustrated in Figure 6. Re-
actions are “color coded” – that is to say assigned to one of the three categories. Quantities are
transfered between color categories based the absence of types in the third category: red goes to
green in the absence of blue; green goes to blue in the absence of red; and blue goes to red in the
absence of green.

To elucidate the concept, here we introduce the reactions for RGB synchronization in isolation.
In Section 3.3, we incorporate the principle into the design of the molecular counter. To implement
the RGB synchronization, we introduce molecular types R, G and B. Computation cycles are im-
plemented by transfering quantities among three types R, G and B, with following reactions:

b + R→ G + b (10) r + G→ B + r (11) g + B → R + g (12)

We generate “absence indicators” types r, g and b corresponding to R, G and B:

∅ slow−→ r
R + r fast−→ R

(13)
∅ slow−→ g

G + g fast−→ G
(14)

∅ slow−→ b
B + b fast−→ B

(15)

The absence indicators are continually generated. However, they only persist in the absence of the

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

8

Accumulation

or destruction

of absence

indicator ax

Production of

prereactant Yp

Production of

molecular type X

Production of

molecular type Y

Production of

prereactant Zp

Accumulation

or destruction

of absence

indicator ay

Production of

molecular type Z

Restart

Accumulation

or destruction

of absence

indicator az

b

Fire in the presence of

absence indicator

Fi
re
 in
 th
e
pr
es
en
ce
 o
f

ab
se
nc
e
in
di
ca
to
r

Fire in the presence of

absence indicator

r

g

Fig. 7. Combined diagrams for synchronization of reactions.

corresponding color-coded signals, since they are quickly consumed by signal molecules in their
corresponding color categories. This feature assures that as long as any reaction in a given phase has
not fired to completion, the succeeding phase cannot begin.

3.3. The Molecular Binary Counter with RGB scheme

Figure 7 shows the assignment operations to phases of the computation. Absence indicators r, g
and b are used to initiate reactions in each phase. In lieu of the generic transfer Reactions 10– 11, we
use transfer reactions that produce the absence indicators ax, ay and az for X, Y and Z, respectively:

r + G
fast−−→ B + ax + r (16) g + B

fast−−→ R + ay + g (17) b + R
fast−−→ G + az + b (18)

This obviates the need for reactions of the form of Reaction 6 to generate ax, ay and az.
A set of reactions for the counter that incorporates the RGB transfer reactions is described in

Figure 8. This is nearly the final design. However, we need a few more reactions to deal with accu-
mulation of unused absence indicators, as well as a few to speed up the production of the absence
indicators.

The Transfer reactions 16–18 supply absence indicators ax, ay and az in every RGB
cycle. The scheme cycles continuously, irrespective of injections of Xinj. Accordingly, un-
used absence indicators ax, ay and az will accumulate. To mitigate against this, we include
“clean-up” reactions initiated in the presence of corresponding absence indicator r, g and b:

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

9

b + ax
fast−−→ b (19) r + ay

fast−−→ r (20) g + az
fast−−→ g (21)

As shown in Figure 8 the corresponding clean-up reactions always complete before the produc-
tion of ax, ay and az begins. For instance, the absence indicator az is pushed into the system by
Reaction 18 whenever the absence indicator b is present. Therefore, the clean-up Reaction 21 for az

fires in the preceding RGB phase that was initiated in the presence of absence indicator g.
Note that the rates at which the reactions in each phase fire depend on the quantities of the

corresponding absence indicators r, g and b. (Each phase is a separate column in Figure 8.) To
ensure that the entire sequence of reactions in each phase completes, we add the following “speed-
up” reactions. These reactions amplify the quantities of the absence indicators for each type when
the other two types are present. In turn, this increases the rates of all the reactions in the phase.

R + G
slow−−→ R + G + b (22) G + B

slow−−→ G + B + r (23) B + R
slow−−→ B + R + g (24)

All reactions in Figure 8 fire at the “fast” rate, except the following reactions:†

r + ax + X
slow−−→ X + r; (25) g + ay + Y

slow−−→ Y + g; (26) b + az + Z
slow−−→ Z + b; (27)

Table 2 shows the final set of RGB reactions and Table 3 shows the final set of reactions for X,
Y and Z. Together, these comprise our complete design of the molecular counter.

Table 2. Final version of RGB reactions for the molecular counter.

Production of r, g, b Destruction of r, g, b Transfer reactions Speed-up reactions Clean-up reactions

∅ slow−−→ r R + r fast−−→ R b + R
fast−−→ G + az + b R + G

slow−−→ R + G + b b + ax
fast−−→ b

∅ slow−−→ g G + g fast−−→ G r + G
fast−−→ B + ax + r G + B

slow−−→ G + B + r r + ay
fast−−→ b

∅ slow−−→ b B + b fast−−→ B g + B
fast−−→ R + ay + g B + R

slow−−→ B + R + g g + az
fast−−→ b

Table 3. Final version of reactions for molecular types X , Y and Z.

Accumulation or destruction of absence indicators Production of molecules Production of prereactant

r + ax + X
slow−−→ X + r g + ax + Xp

fast−−→ X + g b + X + Xp
fast−−→ Yp + b

g + ay + Y
slow−−→ Y + g b + ay + Yp

fast−−→ Y + b r + Y + Yp
fast−−→ Zp + r

b + az + Z
slow−−→ Z + b r + az + Zp

fast−−→ Z + r g + Z + Zp
fast−−→ g

†One might expect that these reactions should fire at the “fast” rate. However, there is always some leakage in the
system; some amount of X , Y and Z is always present. These molecules of X , Y and Z consume molecules of the
corresponding absence indicators, ax, ay and az . If Reactions 25–26 are “slow”, ax, ay and az are still consumed, when
this is necessary; but they are not completely consumed by trace amounts X , Y or Z that are present due to leakage, as
they would be if the reactions were “fast”.

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

10

RGB cycles all the time pushing ax, ay, and az into the system.

Clean-up reactions:

Counting initiated by Xinj operates synchronously with RGB cycle

rXXar slow
x +→++

gYYag slow
y + →++

bZZab slow
z +→++

rZYYr p
fast

p +→++

gZZg fast
p →++

bYXXb p
fast

p +→++

rZZar fast
pz +→++

gXXag fast
px +→++

bYYab fast
py +→++

raBGr x
fast ++→+ gaRBg y

fast ++→+ baGRb z
fast ++→+

xa ya za

rar fast
y →+ bab fast

x →+gag fast
z →+

Fig. 8. Diagram for the molecular counter with RGB synchronization.

4. Simulation results

To evaluate our design, we performed stochastic simulation of the reactions in Table 2 and Ta-
ble 3.15 For the simulation, we assigned the molecular type G an initial amount that was greater than
the amount of trigger type Xp. (Recall that we use Xp as the trigger type, so Xinj = Xp.) This is
necessary: molecules of G produce molecules of ax in Reaction 16; then molecules of ax combine
with molecules of Xp to produce X. So a sufficient quantity of G is needed to ensure that all of the
injected Xp gets consumed during each increment operation.

Table 4 shows our parameters for the simulation. We perform 15 seperate injections of Xp. This
corresponds to two full cycles through the 8 values of the binary counter. We expect to see the
sequence of binary values:

000→ 001→ 010→ · · · → 111→ 000→ 001→ · · · → 110→ 111.

Here the rates of all the “slow” reactions are unity. The rate separation specifies the rate of the “fast”
reactions relative to that of “slow” reactions. We show results for a rate separation of four orders of
magnitude.

Table 4. Parameters for the simulation.

Amount Xinj Initial amount G Time between injections Number of injections Rate separation Trajectories
50 1000 100 15 10,000 750

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

11

The data from stochastic simulation is shown in Table 5. When analyzing it, we stipulate the
following:

(1) If the amount of X, Y or Z is greater than 70% of the injected amount of Xp, then the corre-
sponding bit is logically “1.”

(2) If amount of X, Y or Z is less than 30% of the injected amount of Xp, then the corresponding
bit is logically “0.”

So, for injected amounts of Xp of 50 molecules, amounts of X, Y and Z greater than 35
molecules correspond to “1” and amounts less than 15 molecules correspond to “0.” As can be
seen, the mean values of X, Y and Z are well within the correct range; the counter is functioning
as expected. For the first 8 increment operations, 97.17% of the bits are correct. For the total 15
increment oerations 94.02% are correct. We note that as the counter continues to cycle, the standard
deviation increases. Eventually, significant errors will occur.

Table 5. Statistical data from the stochastic simulation of the molecular counter for 15 successive increment opera-
tions; 750 trajectories were generated.

Injection Binary number Mean Z Mean Y Mean X Stand. dev. Z Stand. dev. Y Stand. dev.X
Initially 000 0 0 0 0 0 0

1 001 0 0.0040 49.9920 0 0.0632 0.1263
2 010 0.1800 49.2800 0.6667 0.7757 3.9982 7.3336
3 011 0.3493 49.3653 49.7760 1.5641 2.6002 2.0832
4 100 46.0640 1.7080 0.7013 8.8421 9.0444 5.6212
5 101 46.0360 1.6893 49.4533 8.7042 8.7215 3.1116
6 110 45.4080 47.4453 1.6000 8.6243 7.2505 9.5936
7 111 44.9213 47.4920 49.3147 9.0950 6.2478 4.8469
8 000 4.2293 2.9013 1.6000 8.7295 8.6207 8.2601
9 001 4.0493 2.8387 49.0213 8.6718 9.1556 6.1392

10 010 4.1573 46.5040 2.4053 8.2922 8.9769 11.3972
11 011 4.1827 45.9413 49.0240 8.5032 9.7176 8.9244
12 100 40.4827 4.7307 3.4880 12.4410 12.3965 15.8317
13 101 39.9747 4.6480 49.1680 12.9882 13.9143 11.2223
14 110 38.3138 45.7290 4.0507 13.5609 12.9068 16.3682
15 111 37.6128 45.1789 48.9292 13.8860 14.5067 12.5843

5. Discussion

We have demonstrated the design of a molecular counter that is relatively robust and rate inde-
pendent. Given only rate categories of “slow” and “fast, the computation is exact and independent
of the specific reaction rates. In particular, it doesn’t matter how fast any “fast” reaction is relative
to another, or how slow any “slow” reaction is relative to another – only that “fast” reactions are
fast relative to “slow” reactions. Throughout the paper, the exposition was in terms of a three-bit
counter. In future work, we will generalize the construction to n bits. We will also strive for more
robust counting over long time periods. (In preliminary work, we have shown that further layers of
“clean-up” operations can achieve this.)

We comment that our design of a molecular counter could be applied for the task of counting cell
divisions. This task is important for the analysis of aging and perhaps for the detection of cancer,

July 23, 2010 13:38 WSPC - Proceedings Trim Size: 11in x 8.5in main

12

where cell divisions runs rampant. Also, our design might find applications in biochemical sensing
and drug delivery.

In this work, our contribution was to tackle the problem of synthesizing computation at an ab-
stract level – working not with actual molecular types but rather with arbitrary types (a, b, c, etc.).
We are exploring the mechanism of DNA-strand displacement advocated by Erik Winfree’s group at
Caltech as an experimental chassis for our method.5 They have shown that the kinetics of arbitrary
chemical reactions can be implemented through DNA strand-displacement reactions. They provide
an assembler that accepts a set of biochemical reactions with nearly any rate structure and deliv-
ers the corresponding DNA sequences for the displacement reactions. Reaction rates are controlled
by designing sequences with different binding strengths; the binding strengths are controlled by
the length and sequence composition of toeholds. Our contribution can be positioned as the “front
end” of the design flow; the DNA assembler and experimental chassis described by these authors
constitute the “back-end.”

References
1. D. Widmaier, D. Tullman-Ercek, E. Mirsky, R. Hill, S. Govindarajan, J. Minshull, and C. Voigt, “En-

gineering the Salmonella type III secretion system to export spider silk monomers,” Molecular Systems
Biology, vol. 5, no. 309, pp. 1–9, 2009.

2. M. Sedlak and N. Ho, “Production of ethanol from cellulosic biomass hydrolysate using generically
engineered yeast,” Applied Biochemistry and Biotechnology, vol. 114, no. 1-3, pp. 403–416, 2004.

3. D. Ro, E. Paradise, M. Ouellet, K. Fisher, K. Newman, J. Ndungu, K. Ho, R. Eachus, T. Ham, M. Chang,
S. Withers, Y. Shiba, R. Sarpong, , and J. Keasling, “Production of the antimalarial drug precursor
artemisinic acid in engineered yeast,” Nature, vol. 440, pp. 940–943, 2006.

4. D. Endy, “Foundations for engineering biology,” Nature, vol. 438, pp. 449–453, 2005.
5. D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal substrate for chemical kinetics,” Pro-

ceedings of the National Academy of Sciences, vol. 107, no. 12, pp. 5393–5398, 2010.
6. L. Lavagno, G. Martin, and L. Scheffer, Electronic Design Automation for Integrated Circuits Handbook.

CRC Press, 2006.
7. P. Senum and M. Riedel, “Rate-independent biochemical computational modules,” in Proceedings of the

Pacific Symposium on Biocomputing (submitted), 2011.
8. A. Shea, B. Fett, M. Riedel, and K. Parhi, “Writing and compiling code into biochemistry,” in Proceed-

ings of the Pacific Symposium on Biocomputing, 2010, pp. 456–464.
9. H. Jiang, M. Riedel, and K. Parhi, “Digital signal processing with biomolecular reactions,” in IEEE

Workshop on Signal Processing Systems, 2010.
10. M. Gibson, “Computational methods for stochastic biological systems,” Ph.D. dissertation, California

Institute of Technology, 2000.
11. D. Soloveichik, M. Cook, E. Winfree, and J. Bruck, “Computation with finite stochastic chemical reac-

tion networks,” Natural Computing, vol. 7, no. 4, 2008.
12. M. Cook, D. Soloveichik, E. Winfree, and J. Bruck, “Programmability of chemical reaction networks,”

in Algorithmic Bioprocesses, A. Condon, D. Harel, J. Kok, A. Salomaa, and E. Winfree, Eds. Springer,
2009, pp. 543–584.

13. D. Gillespie, “Stochastic simulation of chemical kinetics,” Annual Review of Physical Chemistry, vol. 58,
pp. 35–55, 2006.

14. L. Nagel and D. Pederson, “Simulation program with integrated circuit emphasis,” in Midwest Sympo-
sium on Circuit Theory, 1973.

15. D. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” Journal of Physical Chemistry,
vol. 81, no. 25, pp. 2340–2361, 1977.

