
Asynchronous Computation with Molecular
Reactions

Hua Jiang, Marc D. Riedel and Keshab K. Parhi

Department of Electrical and Computer Engineering
University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455
{hua, mriedel, parhi}@umn.edu

Abstract—Mass-action kinetics of chemical reaction networks
(CRNs) is powerful to describe computations through trans-
fers of chemical concentrations. Here we present methods for
asynchronously implementing digital signal processing (DSP)
operations such as filtering with CRNs. We first review an
implementation of DSP operations using molecular reactions
based on a three-phase transfer scheme. This is an example
of a locally asynchronous, globally synchronous implementation.
We then present a fully asynchronous method that transfers
signals based on absence of other signals. We illustrate our
methodology with the design of finite impulse response (FIR)
filters. The computation is exact and independent of specific
reaction rates. Although conceptual for the time being, the
proposed methodology has potential applications in domains of
synthetic biology such as biochemical sensing and drug delivery.

I. INTRODUCTION

The field of molecular computation strives for molecular
implementations of computational processes – that is to say
processes that transform input concentrations of chemical
types into output concentrations of chemical types [1], [2],
[3], [4], [5], [6]. Due to its abstract representation, chemical
reaction networks (CRNs) can describe not only existing
chemical processes, but it can also be used as a programming
language to model computational networks.

Mass-action kinetics of CRNs is powerful to describe com-
putations through transfers of chemical concentrations [7], [8].
Until recently, however, realization of such chemical systems
has been difficult because it is almost impossible to map every
reaction in a CRN to feasible chemical reactions. It is reported
that kinetics of an arbitrary CRN can be implemented by
DNA strand displacement reactions [5], [6], as long as all
reactions in the network are either unimolecular or bimolecular
reactions.

Just as electronic systems implement computation in terms
of voltage (energy per unit charge), molecular systems com-
pute in terms of chemical concentrations (molecules per unit
volume). In this paper, we apply and extend expertise from
digital signal processing (DSP), a sophisticated, mature do-
main [9], to the domain of synthetic biology.

This work is supported by NSF grant #CCF-1117168.

A. Computational Model

A molecular system consists of a set of chemical reactions,
each specifying a rule for how types of molecules combine.
For instance,

A+B
k−→ 2C (1)

specifies that one molecule of A combines with one molecule
of B to produce two molecules of C. The value k is called the
kinetic constant. We model the molecular dynamics in terms of
mass-action kinetics [10], [11]: reaction rates are proportional
to the quantities of the participating molecular types and the
kinetic constants. Accordingly, for the reaction above, the rate
of change in the concentrations of A, B and C is

−d[A]

dt
= −d[B]

dt
=

1

2

d[C]

dt
= k[A][B], (2)

(here [·] denotes concentration). Most prior schemes for molec-
ular computation depend on specific values of the kinetic
constants: the formulas that they compute include the k’s.
This limits the applicability since the kinetic constants are not
constant at all; they depend on factors such as cell volume and
temperature. So the results of the computation are not robust.

We aim for robust constructs: in our methodology we use
only coarse rate categories (“fast” and “slow”). Given such
categories, the computation is exact and independent of the
specific reaction rates. In particular, it does not matter how
fast any “fast” reaction is relative to another, or how slow
any “slow” reaction is relative to another – only that “fast”
reactions are fast relative to “slow” reactions.

B. Organization

The rest of the paper is organized as follows. First, in Sec-
tion II, we provide background for implementing DSP systems
with molecular reactions. Next, in Section III, we review a
locally asynchronous, globally synchronous implementation.
Then in Section IV, we propose a new fully asynchronous
implementation. Finally, in Section V, we provide concluding
remarks.

II. PRELIMINARIES

DSP systems consist of delay elements and computational
elements. This section discusses the abstraction of data flow,



D D

W1 W2
X

Y

Fig. 1: Block diagram of a general FIR filter.

X

Y

W1 W2 Wn-1

Fig. 2: DFG of an n-tap FIR filter.

which is determined by delay elements. Implementation of
computational elements, e.g., scalar multiplier and adder, are
addressed later.

A. Signal Transfer Model

DSP systems are intrinsically represented by data flows.
Block diagram of a general n-tap finite impulse response (FIR)
filter is shown in Fig. 1. Fig. 2 represents a data flow graph
(DFG) derived from the block diagram. Each delay element
in Fig. 1 corresponds to a node in the DFG in Fig. 2. The
communicating edges in Fig. 2 represent computation paths.
The input node is marked as node X and the output node is
marked as node Y . The nodes X and Y may be interpreted
as input and output flip-flops.

To implement signal transfers with molecular reactions,
each node is assigned to a different molecular type. The
molecular transfer from source type to destination type cor-
responding to an edge implements the signal transfer. For
example, reaction

W1
slow−→ W2 (3)

implements the transfer from W1 to W2.
When the transfer is complete, the concentration of the

destination molecular type has been increased by previous
concentration of source type. There are no molecules of the
source type; the source node has been emptied and is ready
to take new signal values.

B. Computational Elements

Scalar multiplication

y =
c2
c1

x

is implemented by reaction

c1X
fast−→ c2Y, (4)

where c1 and c2 are constants.
Every time this reaction fires, c1 molecules of X get

transfered to c2 molecules of Y . Once the reaction has fired
to completion, i.e., fully consumed all molecules of X , the
requisite operation of scalar multiplication is complete.

Addition operation

y = x1 + x2

is implemented by choosing several reactions with the same
product:

X1 −→ Y
X2 −→ Y.

(5)

Once both reactions have fired to completion, the concentra-
tion of Y will be the former concentration of X1 plus the
former concentration of X2.

The fanout operation duplicates concentrations. It is im-
plemented by choosing a reaction producing several different
products from a single reactant:

X
fast−→ Y1 + Y2. (6)

Once this reaction has fired to completion, both the concen-
tration of Y1 and the concentration of Y2 will be equal to the
former concentration of X .

In our design, reactions of computational elements are fast
and reactions of signal transfer are slow, so that computational
reactions do not affect signal transfer.

C. Absence Indication

Consider that we have a group of molecular types
S1, S2, · · · , Sn. aS of this group is a molecular type such that
when molecules of any type in this group are present, concen-
tration of aS is nearly zero; otherwise, when concentrations of
Si (i = 1, · · · , n) are all zero, concentration of aS is nonzero.
Therefore, aS is called absence indicator of Si [12]. This is
satisfied by the reactions below:

∅ slow−→ aS

S1 + aS
fast−→ S1

S2 + aS
fast−→ S2

...
Sn + aS

fast−→ Sn.

(7)

Here the symbol ∅ indicates “no reactants” meaning that
the products are generated from a large or replenishable
source. The first reaction slowly but continually generates
molecules of aS . In the following reactions, S1, S2, · · · , Sn

quickly consume aS , but keep their own concentrations.
Therefore, molecules of aS accumulate only when all types
in S1, S2, · · · , Sn are absent. Absence indication is used to
control signal transfer, as discussed in next two sections.



X

BGR

Y

AC

0.5 0.5

Fig. 3: Two-tap moving average filter in a three-phase config-
uration.

III. GLOBALLY SYNCHRONOUS, LOCALLY
ASYNCHRONOUS IMPLEMENTATION

We have presented a method to implement DSP systems
with molecular reactions using a three-phase signal transfer
scheme (referred to as the RGB scheme) [12]. In each com-
putation cycle, or a single iteration of the DFG, signal transfers
among delay elements are synchronized globally by the RGB
scheme.

We implement delay elements by transferring concentrations
between molecular types based on the absence of other types.
Each delay element DEi is assigned three molecular types
R(ed)i, G(reen)i and B(lue)i. This is a 3-slow implemen-
tation, in which each delay is replaced by 3 delays (see [9],
p. 120). Signal going through DEi will be first transferred to
Ri, and then Gi and Bi. We consider system input X as blue
and system output Y as red. The molecular types of a two-tap
moving-average filter are labeled in Fig. 3.

A computation cycle, in which an input value is processed
and an output value is computed, completes in three phases.
In each phase the signals are transfered from molecular types
in one color category to the next. Transfers of molecules
from one color to another are enabled by absence of the third
color. For example, Ri −→ Gi fires only when aB , absence
indicator of all blue molecules, present. Therefore, transfers
among color categories of different delay elements are globally
synchronized.

The transfers are implemented by the following reactions.
Phase 1 reactions:

aB +Ri
slow−→ Gi

2Gi
slow−→ IG,i

IG,i
fast−→ 2Gi

IG,i +Ri
fast−→ 3Gi

Y
collect−→ ∅

(8)

In the first reaction in Reactions (8), transfer of Ri to Gi

is enabled by aB . The next three reactions provide positive
feedback kinetics. These reactions effectively speed up trans-
fers between color categories as molecules in one category are
“pulled” to the next. Since Y is considered red, it is collected
in Phase 1.

Similarly, reactions of Phase 2 and 3 are

Phase 2 reactions:

aR +Gi
slow−→ Bi

2Bi
slow−→ IB,i

IB,i
fast−→ 2Bi

IB,i +Gi
fast−→ 3Bi

∅ inject−→ X

(9)

Phase 3 reactions:

aG +Bi
slow−→ Computations

2Rj
slow−→ IR,j

IR,j
fast−→ 2Rj

IR,j +Bi
fast−→ Computations+ 2Rj

Computations
fast−→ Rj .

(10)

aR is the absence indicator of Ri’s and Y ; aG is the
absence indicator of Gi’s; aB is the absence indicator of
Bi’s and X . These are implemented by reactions similar
to Reactions (7). Computations are carried out in Phase 3,
during the transfer from blue to red. The computation reactions
fire much faster than the transfer reactions. Therefore, Rj

molecules are immediately produced from Bi molecules. Note
that Rj molecules produced in Phase 3 will be a red type of
any succeeding delay element DEj along the signal path from
DEi.

With the synthesis method discussed above, the full set of
reactions for the moving average filter is listed below:

aG +X
slow−→ A+ C

2C
fast−→ R

2A
fast−→ Y

aB +R
slow−→ G

aR +G
slow−→ B

aG +B
slow−→ Y,

(11)

2R
slow−→ IR

IR
fast−→ 2R

IR +X
fast−→ A+ C + 2R

2G
slow−→ IG

IG
fast−→ 2G

IG +R
fast−→ 3G

2B
slow−→ IB

IB
fast−→ 2B

IB +G
fast−→ 3B

2Y
slow−→ IY

IY
fast−→ 2Y

IY +B
fast−→ 3Y,

(12)



X

Y

W1 W2 W3

1

5 4 3

2

34

5

Fig. 4: DFG of a 4-tap FIR filter with signal transfer sequence.
Step numbers are in circles.

∅ slow−→ aR

R+ aR
fast−→ R

Y + aR
fast−→ Y

∅ slow−→ aG

G+ aG
fast−→ G

∅ slow−→ aB

B + aB
fast−→ B

X + aB
fast−→ X.

(13)

IV. FULLY ASYNCHRONOUS SYSTEM IMPLEMENTATION

DSP systems can also be implemented fully asynchronously.
In this section we present a new method for such implemen-
tation.

A. Signal Transfer Sequence

For a DSP system to be implemented fully asynchronously
with molecular reactions, each directed edge of the DFG is
assigned to a step number. The step number is similar to
a scheduling step in software scheduling. The step number
represents the step at which the signal transfer of an edge takes
place. A key challenge is to assign these step numbers to the
edges such that the assignment is conflict-free and requires
the fewest possible steps. Scheduling such an assignment is a
main contribution of this paper.

Transfer assigned to step i can fire only after all transfers
assigned to step i − 1 have been completed. Consider a 4-
tap filter with all multiplier coefficients assigned to be 1. The
DFG with assigned steps of the filter is shown in Fig. 4.
Given a DFG with step assignment, every node is represented
by a specific molecular type. Each directed edge is mapped
to a reaction transferring its source type to its destination
type. Proceeding from right to left, the signal transfers of
the directed edges in Fig. 4 are assigned step numbers in
increasing order. The input edge of a node is assigned to a
step number that is 1 higher than its output.

We use absence indicator type ai to represent the completion
of step i. ai is maintained by source nodes of all directed edges
assigned to step i. For example, if transfers src1 −→ dest1
and src2 −→ dest2 are both assigned to step 1, then a1 is

B

1

A C

2

e1 e2

(a) Successive transfers.

B

1

A C

2 3

A’

(b) Modified transfers.

Fig. 5: An example of adding intermediate node to solve
transfer conflict.

controlled by reactions

∅ slow−→ a1

src1 + a1
fast−→ src1

src2 + a1
fast−→ src2.

(14)

Molecules of a1 accumulate only when both src1 and src2
are absent, which shows that step 1 has completed.

Given the absence indicators, signal transfers of each step
are enabled by the absence indicator of its previous step,
except for step 1. For any directed edge ek assigned to step i,
the signal transfer is enabled by ai−1, implemented by:

ai−1 + src(ek)
slow−→ dest(ek), i > 1. (15)

B. Conflict Elimination

Reactions (15) implement the signal transfers of all edges
in the DFG. However, conflicts exist in this implementation.
Suppose we have a signal path as shown in Fig. 5(a). There
are two edges in this graph, e1, assigned to step 2, and e2,
assigned to step 1. These are implemented by reactions:

B
slow−→ C

A+ a1
slow−→ B

∅ slow−→ a1

B + a1
fast−→ B.

(16)

Here, node B is both the source of a transfer in step 1
and the destination of a transfer in step 2. When step 1 is
complete, all molecules of B have been transferred to C and
absence indicator a1 starts to accumulate. With a1, A starts
to be transferred to B, which removes a1 and further inhibits
the transfer of edge e1. Reaction A+ a1

slow→ B stops before
A is fully transferred to B. This example shows that when a
signal node is both the source of a transfer in step i and the
destination of a transfer in step i+ 1, the system halts.

To resolve this problem, it is required that

step(e1) 6= step(e2) + 1 (17)

when
dest(e1) = src(e2).

To achieve this, we first draw an equivalent 2-slow version of
the DFG, where each delay is replaced by 2 delays (see [9],
p. 120). Here we apply 2-slow configuration to A, which is
replaced by A and A′. The edge from A to A′ is represented



X’

Y

W1
5 W’1 W2 W’2 W3 W’3

46 3 2

6

5 4
3

54

1

X

Y’

Fig. 6: Modified DFG without conflict.

by a dashed edge. Signal is first transferred from A to A′

and then to B, before its further transfer to succeeding nodes.
At the beginning of each computational cycle, there are no
molecules of A′. The transfer of e1 in Fig. 5(a) is finished in
two steps. The first step, transfer from A to A′, is still assigned
to step 2; the second step, transfer from A′ to B, is assigned
to step 3, as shown in Fig. 5(b). Now there are no conflicting
edges and absence indicators.

Formally, when a signal node is both the source of a transfer
in step i and the destination of a transfer in step i + 1, i.e.,
condition (17) does not hold, use the 2-slow implementation
for the source node of the second transfer and break the second
transfer into two steps, in step i + 1 and i + 2. Reactions
managing absence indicators are re-generated in accordance
with this change.

With conflict elimination, the DFG of the 4-tap filter is
redrawn in Fig. 6. Fig. 6 represents a 2-slow version of Fig. 4;
each delay is replaced by 2 delays: one marked with original
variable, and another mark with a prime. The original delay
and the primed delay nodes are connected by dashed edges. In
the assignment in Fig. 6, sampling output Y , i.e., transfer of Y
to Y ′, is assigned to step 1. In the proposed assignment, the
signal transfers associated with dashed edges are numbered
starting with 2 and in increasing order from right to left. Each
outgoing edge of the destination nodes of the dashed edges is
assigned a step that is 1 higher than the incoming edge. The
filter is implemented by following reactions. Note that a6 is
used to enable step 1.

Signal transfer:

Y + a6
slow−→ Y ′

W3 + a1
slow−→ W ′3

W2 + a2
slow−→ W ′2

W ′3 + a2
slow−→ Y

W1 + a3
slow−→ W ′1

W ′2 + a3
slow−→ W3 + Y

X + a4
slow−→ X ′

W ′1 + a4
slow−→ W2 + Y

X ′ + a5
slow−→ W1 + Y.

Positive feedback kinetics:

W ′3 +W3
slow−→ 2W ′3

W ′2 +W2
slow−→ 2W ′2

W ′1 +W1
slow−→ 2W ′1

W3 +W ′2
slow−→ 2W3 + Y

W2 +W ′1
slow−→ 2W2 + Y

W1 +X
slow−→ 2W1 + Y.

Absence indicator:

∅ slow−→ a1

Y + a1
fast−→ Y

∅ slow−→ a2

W3 + a2
fast−→ W3

∅ slow−→ a3

W2 + a3
fast−→ W2

W ′3 + a3
fast−→ W ′3

∅ slow−→ a4

W1 + a4
fast−→ W1

W ′2 + a4
fast−→ W ′2

∅ slow−→ a5

W ′1 + a5
fast−→ W ′1

∅ slow−→ a6

X ′ + a6
fast−→ X ′.

This example illustrates that the 4-tap FIR filter can be
completed in 6 steps. In general, any n-tap FIR filter with
all “1” coefficients can be completed by this assignment in
n+ 2 steps.

V. CONCLUSIONS

This paper has introduced a new method for implementing
data flow graph fully asynchronously by molecular reactions.
Current work is being directed towards generalizing this
method to construct a conflict-free assignment for any arbitrary
DFG. Future work will be directed towards validating the
proposed method by simulating the chemical reactions. We are
exploring the mechanism of DNA-strand displacement advo-
cated by Erik Winfree’s group at Caltech as an experimental
chassis [5]. They have shown that the kinetics of arbitrary
chemical reactions can be emulated with DNA. Future work
will also address mapping the proposed reactions to DNA
strands displacement.

REFERENCES

[1] L. Adleman, “Molecular computation of solutions to combinatorial
problems,” Science, vol. 266, no. 11, pp. 1021–1024, 1994.

[2] L. Qian, D. Soloveichik, and E. Winfree, “Efficient turing-universal
computation with DNA polymers,” in International Conference on DNA
Computing and Molecular Programming, 2010.

[3] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree, “Enzyme-free
nucleic acid logic circuits,” in Science, vol. 314, 2006, pp. 1585–1588.

[4] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck, “Computation with
finite stochastic chemical reaction networks,” Natural Computing, vol. 7,
no. 4, 2008.

[5] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal substrate
for chemical kinetics,” Proceedings of the National Academy of Sciences,
vol. 107, no. 12, pp. 5393–5398, 2010.

[6] B. Yurke, A. J. Turberfield, A. P. Mills, Jr, F. C. Simmel, and J. Neu-
mann, “A DNA-fuelled molecular machine made of DNA,” Nature, vol.
406, pp. 605–608, 2000.

[7] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical
Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford Univ
Press, 1998.

[8] B. Fett, J. Bruck, and M. D. Riedel, “Synthesizing stochasticity in
biochemical systems,” in Design Automation Conference, 2007, pp. 640–
645.

[9] K. K. Parhi, VLSI Digital Signal Processing Systems. John Wiley &
Sons, 1999.

[10] P. Érdi and J. Tóth, Mathematical Models of Chemical Reactions: Theory
and Applications of Deterministic and Stochastic Models. Manchester
University Press, 1989.

[11] F. Horn and R. Jackson, “General mass action kinetics,” Archive for
Rational Mechanics and Analysis, vol. 47, pp. 81–116, 1972.

[12] H. Jiang, A. P. Kharam, M. D. Riedel, and K. K. Parhi, “A synthesis
flow for digital signal processing with biomolecular reactions,” in IEEE
International Conference on Computer-Aided Design, 2010, pp. 417–
424.


