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Abstract Stochastic logic allows complex arithmetic to be performed with very
simple logic, but it suffers from high latency and poor precision. Furthermore, the
results are always somewhat inaccurate due to random fluctuations. The random or
pseudorandom sources required to generate the representation are costly, consuming
a majority of the circuit area (and diminishing the overall gains in area). This chapter
reexamines the foundations of stochastic computing and comes to some surprising
conclusions. It demonstrates that one can compute deterministically using the same
structures that are used to compute stochastically. In doing so, the latency is reduced
by an exponential factor; also, the area is reduced significantly (and this correlates
with a reduction in power); and finally, one obtains completely accurate results,
with no errors or uncertainty. This chapter also explores an alternate view of this
deterministic approach. Instead of viewing signals as digital bit streams, we can
view them as periodic signals, with the value encoded as the fraction of the time
that the signal is in the high (on) state compared to the low (off) state in each cycle.
Thus we have a time-based encoding. All of the constructs developed for stochastic
computing can be used to compute on these periodic signals, so the designs are very
efficient in terms of area and power. Given how precisely values can be encoded
in the time, the method could produce designs that have much lower latency that
conventional ones.

5.1 Introduction

As detailed throughout this book, the topic of stochastic computing has been
investigated from many angles, by many different researchers. In spite of the ac-
tivity, it is fair to say that the practical impact of the research has been modest.
In our view, interest has been sustained because of the intellectual appeal of the
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paradigm. It presents a completely different way of computing functions with dig-
ital logic. Complex functions can be computed with remarkably simple structures.
For instance, multiplication can be performed with a single AND gate. Complex
functions such as exponentiation, absolute value, square roots, and hyperbolic tan-
gent can each be computed with a very small number of gates [1]. Although this
is a claim that can only be justified through design examples, stochastic designs
consistently achieve 50× to 100× reductions in gate count over a wide range of ap-
plications in signal, image and video processing, compared to conventional binary
radix designs [1]. Savings in area correlate well with savings in power, a critical
metric.

Note that while stochastic computation is digital – operating on 0’s and 1’s –
and performed with ordinary logic gates, it has an “analog” flavor: conceptually, the
computation consists of mathematical operations on real values, the probabilities of
the streams. The approach is a compelling and natural fit for computing mathemati-
cal functions, for applications such as image processing and neural processing.

The intellectual appeal notwithstanding, the approach has a glaring weakness:
the latency it incurs. A stochastic representation is not compact: to represent 2M

distinct numbers, it requires roughly 22M bits, whereas a conventional binary rep-
resentation requires only M bits. When computing on serial bit streams, this results
in an exponential, near-disastrous increase in latency. The simplicity of the logic
generally translates to very short critical paths, so one could, in principle, bump up
the clock to very high rates. This could mitigate the increase in latency. But there
are practical limitations to increasing the clock rate [2, 3].

Another issue is the cost of generating randomness. Most implementations have
used pseudo-random number generators such as linear-feedback shift registers (LF-
SRs). The cost of these easily overwhelms the total area cost, completely offset-
ting the gains made in the structures for computation [4, 5]. Researchers have ex-
plored sources of true randomness [6, 7]. Indeed, with emerging technologies such
as nanomagnetic logic, exploiting true randomness from physical sources could tip
the scales, making stochastic computing a winning proposition [8]. Still, the latency
and the cost of interfacing random signals with deterministic signals make it a hard
sell.

In this chapter, we reexamine the foundations of stochastic computing, and come
to some surprising conclusions. Why is computing on probabilities so powerful,
conceptually? Why can complex functions be computed with such simple struc-
tures? Intuition might suggest that somehow we are harnessing deep aspects of
probability theory; perhaps we are computing approximate answers to hard prob-
lems efficiently through “sampling” as with Monte Carlo simulations. This intuition
is wrong.

The key to the efficiency of stochastic computing is much simpler: it stems from
performing streaming computation on values represented by quantity, on a uniform
representation, rather than representing values by position, as they are in binary
radix. In this chapter, we demonstrate that, if the computation is properly structured,
we can compute deterministically on bit streams using the same structures as we use
when computing stochastically.
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1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, …

  

(a)    value is 2/4 = 0.5

1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, … 

(b)    value is 7/8 = 0.875

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, … 

 (c)   value is 5/11 = 0.455

Time

Fig. 5.1: Digital signals encoded as periodic bit streams. The values represented are
(a) 0.5, (b) 0.875, and (c) 0.455.
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Fig. 5.2: A Pulse-Width Modulated (PWM) signal. The value represented is the
fraction of the time that the signal is high in each cycle, in this case 0.687.

pA = 1/3 = 100→ 100 100 100
pB = 2/3 = 110→ 111 111 000
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Fig. 5.3: Multiplication with a single AND gate, operating on deterministic periodic
bit streams.
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Fig. 5.4: Multiplication with a single AND gate: operating on deterministic periodic
signals. A represents 0.5 with a period of 20ns; B represents 0.6 with a period of
13ns. The output signal C from t=0ns to 260ns represents 0.30, the expected value
from multiplication of the inputs.
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Next, this chapter explores a generalization of this deterministic approach. In-
stead of computing on bit streams, we explore computing on periodic signals, with
the value encoded as the fraction of the time that the signal is in the high (on)
state compared to the low (off) state in each cycle. Consider the examples in Fig-
ures 5.1 and 5.2. We will call digital bit streams of this sort uniform bit streams.
We will call analog signals of this sort pulse-width modulated (PWM) signals.
By exploiting pulse width modulation, signals with specific values can be generated
by adjusting the frequency and duty cycles of the PWM signals. Note that a PWM
signal is, in fact, digital in the sense that the voltage level is either 0 or 1. However,
it represents a real-valued (analog) signal by its duration.

But how can one compute on such periodic signals? Recall that with stochastic
logic, multiplication is performed with a single AND gate. Simply connecting two
periodic signals to the inputs of an AND gate will evidently not work. With the two
signals lining up, multiplying 1/2 by 1/2 would produce an output signal equal to 1/2,
not equal to 1/4, the value required. However, suppose that one adopts the following
strategy when generating the bit streams: hold each bit of one stream, while cycling
through all the bits of the other stream. Figure 5.3 gives an example. Here the value
1/3 is represented by the bits 100 repeating, while the value 2/3 is represented by the
110, clock-divided by three. The result is 2/9, as expected. This method works in
general for all stochastic constructs.

In an analogous way, we can perform operations on PWM signals. For instance,
one can use periodic signals with relatively prime frequencies. Figure 5.4 shows an
example of multiplying two values, 0.5 and 0.6, represented as PWM signals. The
period of the first is 20ns and that of the second is 13ns. The figure shows that, after
performing the operation for 260ns, the fraction of the total time the output signal is
high equals the value expected when multiplying the two input values, namely 0.3.

The idea of computing on time-encoded signals has a long history [9–12]. We
have been exploring the idea of time-based computing with constructs developed
for stochastic computing [13,14]. We note that other researchers have explored very
similar ideas in the context of LDPC decoding [15].

As we will argue, compared to computing on stochastic bit streams, we can re-
duce the latency significantly – by an exponential factor – with deterministic ap-
proaches. Of course, compared to binary radix, uniform bit streams still incur high
latency. However, with PWM signals, the precision is no longer dependent on the
length of pulses, but rather on how accurately the duty cycle can be set.

As technology has scaled and device sizes have gotten smaller, the supply volt-
ages have dropped while the device speeds have improved [16]. Control of the dy-
namic range in the voltage domain is limited; however, control of the length of
pulses in the time domain can be precise [16,17]. Encoding data in the time domain
can be done more accurately and more efficiently than converting signals into binary
radix. Given how precisely values can be encoded in time, our method could pro-
duce designs that are much faster than conventional ones – operating in the terahertz
range. Figure 5.5 compares the conventional approach, consisting of an analog-to-
digital converter (ADC) that produces binary radix, to the new methods that we are
proposing here.
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Fig. 5.5: Comparison of (a) the conventional approach, namely digital computation
on binary radix; to (b) our methodology on uniform bit streams; and (c) our method-
ology on pulse-width modulated (PWM) signals.

5.2 A Deterministic Approach

The benefit of stochastic computing is that complex operations can be performed
with very simple logic. We point the reader to a subset of the work that demon-
strates this: [4,5,18,18–29]. This body of work includes examples of both basic and
applied operations, ranging from multiplication, scaled addition, and exponentia-
tion; to polynomial approximations of trigonometric functions; to LDPC decoders;
to video processing operations such as edge detection. Across the board, the exam-
ples demonstrate a reduction in area by an order of magnitude or more compared to
conventional designs.

An obvious drawback of the stochastic paradigm is the high latency that results,
due to the length of the bit streams. Another is that the computation suffers from
errors due to random fluctuations and correlations between the streams. These ef-
fects worsen as the circuit depth and the number of inputs increase [4]. While the
logic to perform the computation is simple, generating random or pseudorandom
bit streams is costly. Indeed, in prior work, pseudorandom constructs such as lin-
ear feedback shift registers (LFSRs) accounted for as much as 90% of the area of
stochastic circuit designs [19, 20]. This significantly diminishes the area benefits.

In this chapter, we argue that randomness is not a requirement for the paradigm.
We show that the same computation can be performed on deterministically gener-
ated bit streams. The results are completely accurate, with no random fluctuations.
Without the requirement of randomness, bit streams can be generated inexpensively.
Most importantly, with our approach, the latency is reduced by a factor of approx-
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Fig. 5.6: Discrete Convolution. (a) Mathematical operation on two bit streams, X
and Y . (b) Intuition: convolution is equivalent to sliding one bit streams past the
other.

imately 1/2n, where n is the equivalent number of bits of precision. (For example,
for the equivalent of 10 bits of precision, the bit stream length is reduced from 220

to only 210.) As is the case with stochastic bit streams, all bits in our deterministic
streams are weighted equally. Accordingly, as is the case with stochastic circuits,
our deterministic circuits have a high degree of tolerance to soft errors.

5.2.1 Intuitive View

Conceptually, an operation such as multiplication in stochastic logic works by
randomly sampling the inputs. This is achieved by randomizing the input bit streams
and then intersecting them. This approach is easy to understand but incurs a lot of
overhead: one must create the random bit streams, say with constructs such as LF-
SRs; this is costly. Furthermore, one must do a lot of sampling. Indeed, as explained
in Section 5.2.2, in order to obtain a result that is equivalent in precision to n bits,
one must sample 22n bits. Randomness requires, in effect, “oversampling” to get a
statistically accurate result [5].

But is such randomly sampling necessary? Why not simply intersect two de-
terministic bit streams. Consider the mathematical operation of convolution. Intu-
itively, it consists of three operations: slide, multiply, and sum. Figure 5.6 illustrates
this. If we implement this operation on uniform deterministic bit streams, the result
will be equivalent to a stochastic operation.

Example 1

B 
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100 100 100 

110 110 110 

S 
111 111 000 

100 100 110 
1 

0 

C 

Fig. 5.7: Scaled Addition via Convolution, by Clock Dividing a Signal.
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An example of multiplication by “clock-diving” one input stream and repeating the
other was shown in Figure 5.3 in the introduction. Suppose that we wish to perform
scaled addition, say on inputs pA = 1/3, pB = 2/3, and pS = 2/3. We can divide the bit
stream on the select input S to a multiplexer, while the bit streams for the operands
A and B repeat:

pA = 1/3 = 100 → 100100100
pB = 2/3 = 110 → 110110110
pS = 2/3 = 110 → 111111000

Figure 5.7 illustrates that the result is pC = pS pA +(1− pS)pB = 2/9+ 2/9 = 4/9.

5.2.2 Comparing Stochastic and Deterministic Representations

A stochastic representation maintains the property that each bit of one stream
meets every bit of an other stream the same number of times, but this property occurs
on average, meaning the bit streams have to be much longer than the resolution they
represent due to random fluctuations. The bit stream length N required to estimate
the average proportion within an error margin ε is

N >
p(1− p)

ε2

(This is proved in [5].) To represent a value within a binary resolution 1/2n, the
error margin ε must equal 1/2n+1. Therefore, the bit stream must be greater than 22n

uniform bits long, as the p(1− p) term is at most 2−2. This means the length of a
stochastic bit stream increases exponentially with the desired resolution. This results
in enormously long bit streams. For example, if we want to find the proportion of
a random bit stream with 10-bit resolution (1/210), we will have to observe at least
220 bits. This is over a thousand times longer than the bit stream required by a
deterministic uniform representation.

The computations also suffer from some level of correlation between bit streams.
This can cause the results to bias away from the correct answer. For these reasons,
stochastic logic has only been used to perform approximate computations. Another
related issue is that the LFSRs must be at least as long as the desired resolution
in order to produce bit streams that are sufficiently random. A “Randomizer Unit”,
described in [22], uses a comparator and LFSR to convert a binary encoded number
into a random bit stream. Each independent random bit stream requires its own
generator. Therefore, circuits requiring i independent inputs with n-bit resolution
need i LFSRs with length L approximately equal to 2n. This results in the LFSRs
dominating a majority of the circuit area.

By using deterministic bit streams, we avoid all problems associated with ran-
domness while retaining all the computational benefits associated with a stochastic
representation. However, we can use much shorter bit streams to achieve the same
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precision: to represent a value with resolution 1/2n in a deterministic representation,
the bit stream must be 2n bits long. The computations are also completely accurate;
they do not suffer from correlation. The next section discusses three methods for
generating independent deterministic bit streams and gives their circuit implemen-
tations. Without the requirement of randomness, the hardware cost of the bit stream
generators is reduced, so it is a win in every respect.

5.2.3 Deterministic Methods

n-bit 

Comparator 

G = Q < C 

Number 

Source 

[0, 2n) 

Constant 

Number 

[0, 2n) 

G 

C 

Q 

Fig. 5.8: Converter module

We present three alternative approaches to deterministic computation on uniform
bit streams. These differ in how the uniform bit streams are generated. We note that
the computational structures themselves are identical to those developed for stochas-
tic computing. Accordingly, existing designs for arithmetic, signal processing and
video processing can be used. We illustrate the approach with the simplest example:
multiplication with an AND gate.

The three methods for generating the uniform bit streams are: (1) using relatively
prime lengths; (2) rotation; and (3) clock division. For each method, the hardware
complexity of the circuit implementation is given. The computation time of each
method is the same. Each method is implemented using a bit stream generated from
“converter” modules, illustrated in Figure 5.8. The modules are similar to the “Ran-
domizer Unit” [19]; the difference is that the LFSR is replaced by a deterministic
number source.

5.2.4 Relatively Prime Bit Lengths

The “relatively prime”’ method maintains independence by using bit streams that
have relatively prime lengths. Here the ranges [0, Ri) between converter modules
are relatively prime. Figure 5.9 demonstrates the method with two bit streams A and
B, one with operand length four and the other with operand length three. The bit
streams are shown in array notation to show the position of each bit in time.
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Fig. 5.9: Two bit streams generated by the “relatively prime” method
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Fig. 5.10: Circuit implementation of the “relatively prime” method
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Fig. 5.11: Two bit streams generated by the “rotation” method
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Fig. 5.12: Circuit implementation of the “rotation” method
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Fig. 5.13: Two bit streams generated by the “clock division” method

Comp 

G0 

C0 

[0, 2n)!Cntr 

Q0 

Comp 

G1 

C1 

[0, 2n)!Cntr 

Q1 

Comp 

G2 

C2 

[0, 2n)!Cntr 

Q2 

CLK 

…  

Fig. 5.14: Circuit implementation of the “clock division” method
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Independence between bit streams is maintained because the remainder, equal to
the overlap between bit streams, always results in a new rotation (or initial phase)
of stream. Intuitively, this occurs because the bit lengths share no common factors.
This results in every bit of each operand seeing every bit of the other operand. For
example, a0 sees b0, b1, and b2; b0 sees a0, a3, a2, and a1; and so on. Using two bit
streams with relatively prime bit lengths j and k, the output of a logic gate repeats
with period jk. This means that, with multi-level circuits, the output of the logic
gates will also be relatively prime. This allows for the same arithmetic logic as a
stochastic representation.

A circuit implementation of the “relatively-prime” method is shown in Figure
5.10. Each converter module uses a counter as a number source for iterating through
each bit of the stream. The state of the counter Qi is compared with the stream con-
stant Ci. The relatively prime counter ranges Ri between modules maintain inde-
pendence. In terms of general circuit components, the circuit uses i counters and i
comparators, where i is the number of generated independent bit streams. Assuming
the max range is a binary resolution 2n and all modules are close to this value (i.e.,
256, 255, 253, 251...), the circuit contains approximately i n-bit counters and i n-bit
comparators.

5.2.5 Rotation

In contrast to the previous method, the “rotation” method allows bit streams of
arbitrary length to be used. Instead of relying on relatively prime lengths, the bit
streams are explicitly rotated. This requires the sequence generated by the number
source to change after it iterates through its entire range. For example, a simple way
to generate a bit stream where the stream lengths rotates in time is to inhibit or stall
a counter every 2n clock cycles (where n is the length of the counter). Figure 5.11
demonstrates this method with two bit streams, both of length four.

By rotating bit stream B’s length, it is straightforward to see that each bit of one
bit stream sees every bit in the other stream. Assuming all streams have the same
length, we can extend the example with two bit streams to examples with multiple
bit streams; here we would be inhibiting counters at powers of the operand length.
This allows the operands to rotate relative to longer bit streams.

A circuit implementation follows from the previous example. We can generate
any number of independent bit streams as long as the counter of every ith converter
module is inhibited every 2ni clock cycles. This can be managed by adding addi-
tional counters between each module. These counters control the phase of each con-
verter module and maintain the property that each converter module rotates relative
to the other modules. Using n-bit binary counters and comparators, the circuit re-
quires i n-bit comparators and 2i−1 n-bit counters. The advantage of using rotation
as a method for generating independent bit streams is that we can use operands with
the same resolution, but this requires slightly more circuitry than the “relatively-
prime” method.
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5.2.6 Clock Division

The “clock division” method works by clock dividing operands. Similar to the
“rotation” method, it operates on streams of arbitrary lengths. (This method was first
seen in Examples 1 and 2 in Section 5.2.1.) Figure 5.13 demonstrates this method
with two bit streams, both with bit streams of length four. Bit stream B is clock
divided by the length of bit stream A’s value.

Assuming all operands have the same length, we can generate an arbitrary num-
ber of independent bit streams as long as the counter of every ith converter module
increments every 2ni clock cycles. This can be implemented in circuit form by sim-
ply chaining the converter module counters together, as shown in Figure 5.14. Using
n-bit binary counters and comparators, the circuit requires i n-bit comparators and
i n-bit counters. This means the “clock division” method allows operands of the
same length to be used with approximately the same hardware complexity as the
“relatively-prime” method.

5.2.7 Comparing the Three Deterministic Methods to Stochastic
Methods

Table 5.1
Gate count for basic deterministic components, where n is the resolution and i is

the number of inputs.

Component Gate Count
Comparator 3n

Counter 6n
LFSR 12ni

Here we compare the hardware complexity and latency of the deterministic meth-
ods with conventional stochastic methods. Perfectly precise computations require
the output resolution to be at least equal to the product of the independent input res-
olutions. For example, with input bit stream lengths of n and m, the precise output
contains nm bits.

Consider a stochastic representation implemented with LFSRs. As discussed in
Section 5.2.2, a stochastic representation requires bit streams that are 22n bits long
to represent a value with 1/2n precision. In order to ensure that the generated bit
streams are sufficiently random and independent, each LFSR must have at least as
many states as the required output bit stream. Therefore, to compute with perfect
precision each LFSR must have at least length 2ni.

With our deterministic methods, the resolution n of each of the i inputs is deter-
mined by the length of its converter module counter. The output resolution is simply
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the product of the counter ranges. For example, with the “clock division” method,
each converter module counter is connected in series. The series connection forms a
large counter with 2ni states. This shows that output resolution is not determined by
the length of each individual number source, but by their concatenation. This allows
for a large reduction in circuit area compared to stochastic designs..

Table 5.2
Gate count for stochastic and deterministic bit stream generators, where n is

resolution and i is the number of inputs. Latency for each method.

Representation Method Gate Count Latency
Stochastic Randomizer 12ni2 +3ni 22ni

Deterministic
Rel. Prime 9ni

2niRotation 15ni−6n
Clock Div. 9ni

To compare the area of the circuits, we assume three gates for every cell of a
comparator and six gates for each flip-flop of a counter or LFSR (this is similar
to the hardware complexity used in [29] in terms of fanin-two NAND gates). For
i inputs with n-bit binary resolution, the gate count for each basic component is
given by Table 5.1. Table 5.2 gives the total gate count and bit stream length for
precise computations in terms of independent inputs i with resolution n for prior
stochastic methods as well as the deteterminstic methods that we propose here. The
basic component totals for each deterministic method were discussed in Section
5.2.3. For stochastic methods, we assume that each “Randomizer Unit”’ needs one
comparator and one LFSR per input.

The equations of Table 5.2 show that our deterministic methods use less area
and compute to the same precision, in exponentially less time. It is a win on both
metrics, but the reduction in latency is especially compelling. Consider a reduction
in latency from 1/220 = 1,048,576, to just 1/210 = 1,024!.

5.3 An Analog Approach

Building on the insight that stochastic computation can be implemented deter-
ministically, we explore computation on “Pulse-Width Modulated” (PWM) signals.
We encode values as the fraction of the time that the signal is in the high (on) com-
pared to the low (off) state in each cycle. An example was shown in Figure 5.2 in
the introduction.

As we will show, the key is choosing different periods for the PWM signals, and
letting the system run over multiple cycles. If we choose relatively prime periods
and run the signals to their common multiple, we achieve the effect of “convolving”
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the signals. This is analogous to the approach that we took with deterministic digital
bit streams in Section 5.2.4, where we used relatively prime bit stream lengths.

MUX

IN1 IN2

Sel 10

Out

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IN1

IN2

Sel

Out

Fig. 5.15: An example of the scaled addition of two PWM signals using a MUX.
Here IN1 and IN2 represent 0.2 and 0.6 with a period of 5ns. Sel represents
0.5 with a period of 4ns. The output signal from t=0ns to 20ns represents 0.40
(8ns/20ns=4/10), the expected value from the scaled addition of the inputs.

Figure 5.4 in the introduction showed an example of multiplication on PWM
signals. Here we show an example of addition. Recall that with stochastic logic,
scaled addition can be performed with a multiplexer (MUX). The performance of a
MUX as a stochastic scaled adder/subtracter is insensitive to the correlation between
its inputs. This is because only one input is connected to the output at a time [24].
Thus, highly overlapped inputs like PWM signals with the same frequency can be
connected to the inputs of a MUX. The important point when performing scaled
addition and subtraction with a MUX on PWM signals is that the period of the
select signal should be relatively prime to the period of the input signals.

Figure 5.15 shows an example of scaled addition on two numbers, 0.2 and 0.6,
represented by two PWM signals. Both have periods of 5ns. A PWM signal with a
duty cycle of 50% and period of 4ns is connected to the select input of the MUX.
As shown, after performing the operation for 20ns, the fraction of the total time the
output signal is high equals the expected value, 0.40.

5.4 Conclusion

While it is easy conceptually to understand how stochastic computation works,
randomness is costly. This chapter argues that randomness is not necessary. Instead
of relying upon statistical sampling to operate on bit streams, we can explicitly “con-
volve” them: we slide one operand past the other, performing bitwise operations. We
argued that the logic to perform this convolution is less costly than that to generate
pseudorandom bit streams. More importantly, we can use much shorter bit streams
to achieve the same accuracy as with statistical sampling through randomness. In-
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deed, the results of our computation are predictable and completely accurate for all
input values.

Of course, compared to a binary radix representation, our deterministic repre-
sentation is still not very compact. With M bits, a binary radix representation can
represent 2M distinct numbers. To represent real numbers with a resolution of 2−M ,
i.e., numbers of the form a

2M for integers a between 0 and 2M , we require a stream
of 2M bits. In contrast, a stochastic representation requires 22M bits to achieve the
same precision!

We conclude that there is no clear reason to compute on stochastic bit streams.
Even when randomness is free, say harvested from thermal noise or some other
physical source, stochastic computing entails very high latency. In contrast, compu-
tation on deterministic uniform bit streams is less costly, has much lower latency,
and is completely accurate.

We do note that there is one drawback to the approach: bit stream lengths grow
with each level of logic. This is, in fact, a mathematical requirement. Consider the
multiplication of two numbers, each encoded with a precision of n binary bits. Re-
gardless of the encoding, the precision of the result must be greater than the preci-
sion of the two operands: up to n2 bits are required. Stochastic encodings have the
same requirement. However, with randomness it is easy to approximate the result,
by simply truncating the length of the streams. Accordingly, most stochastic circuits
keep constant bit stream lengths regardless of the levels of logic. We concede that
there is no straight-forward way to optimally truncate the results of our deterministic
computation. See [30] for a discussion of this topic.

This chapter also presented an alternated view of deterministic computation. In-
stead of streams of digital bits, we can encode data as periodic pulses, with the value
represented by the fraction of the duty cycle of each pulse. We are still representing
data digitally, though not by an encoding in space, but rather through an encod-
ing in time. With data represented this way, we can use the same theory and all the
same constructs developed for stochastic computing on these deterministic, periodic
signals.

This time-based approach is motivated by the observation that, as technology
has scaled and device sizes have gotten smaller, the supply voltages have dropped
while the device speeds have improved. Control of the dynamic range in the voltage
domain is limited; however, control of the length of pulses in the time domain can
be precise. Given how precisely values can be encoded in the time, the method
could produce designs that are much faster than conventional ones – operating in the
terahertz range. This remains a work in progress. Potentially, this paradigm could
deliver circuits that are as efficient in terms of area and power as stochastic circuits,
with considerably lower latency.
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