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1 Context

In the nascent field of synthetic biology, researchers are striving to create biological systems with functionality
not seen in nature. Examples include Salmonella that secretes spider silk proteins [58], yeast that degrades
biomass into ethanol [49], and E. coli that produces antimalarial drugs [48].

The field aims to apply engineering methods to biology in a deliberate way. Beyond engineering ends,
such methods also provide a constructive means to validating new science. As the great Caltech physicist
Richard Feynman stipulated, “If I can’t create it, I don’t understand it.” Understanding is achieved by
constructing and testing simplified systems from the bottom up, teasing out and nailing down fundamental
principles in the process [10]. As Drew Endy, an eloquent proponent of synthetic biology, describes it:
natural biological systems are fiendishly complicated; instead of endlessly probing them with experiments,
in some cases, we are better off rebuilding the functionality from the ground up. This provides engineered
“surrogates” that are easier to understand and interact with.

Whether viewed as an engineering discipline that tinkers to achieve new functionality or one that builds
systems from the ground up, synthetic biology is still in its early stages. The field has been driven by
experimental expertise; much of its success has been attributable to the skill of the researchers in specific
domains of biology. Creating and integrating synthetic components remains an ad hoc process. The field
has now reached a stage where it calls for the development of conceptual design methodologies.

Richard Newton had a visionary view, articulated in a talk that he gave shortly before his death in 2007,
titled “The Future is Bio-Design Automation” – a view reprised by Jan Rabaey in his keynote speech at the
Design Automation Conference in 2007 commemorating Newton. The view is that synthetic biology repre-
sents but a new technological substrate for design automation. For electronics, we have a design methodology
that involves clear abstractions, standardized interfaces, a constrained design space, and availability of intel-
lectual property. The same requirements exist in biology; designers need to build models, compress them for
analysis, and synthesize them into substrates such as E. coli or yeast. As Rabaey commented, “the potential
synergy with electronic design automation (EDA) is huge.” Indeed, there have been quite a few deliberate at-
tempts to bring concepts from digital circuit design into synthetic biology [4, 5, 8, 57, 56, 60, 59, 40, 50, 54, 61].

2 Overview

We bring a particular mindset to tackle the problem of synthesizing new biological functions. We tackle
synthesis at a conceptual level, working with abstract molecular types. Working at this level, we implement
computational constructs, that is to say, chemical reaction networks that compute specific outputs as a
function of inputs. Then we map the conceptual designs onto specific chemical substrates.

The idea of molecular computing dates back to seminal work by Len Adleman, who discussed solutions to
combinatorial problems such as the Hamiltonian Path Problem and Boolean Satisfiability [1]. In spite of the
initial hype, including claims of massive parallelism – “100 Teraflop performance in a test tube!” screamed
the headlines at the time – such applications were never compelling. Chemical systems are inherently slow
and messy, taking minutes or even hours to finish, and producing fragmented results. Such systems will
never be competitive with conventional silicon computers for tasks such as number crunching.

Rather, the impetus of this research is the design of “embedded controllers” – chemical reactions, en-
gineered into biological systems such as viruses and bacteria, to perform useful molecular computation in
situ where it is needed. For example, consider a system for chemotherapy drug delivery with engineered
bacteria. The goal is to get bacteria to invade tumors and selectively produce a drug to kill the cancerous
cells. Embedded control of the bacteria is needed to decide where and how much of the drug they should
deliver. The computation could be as simple as: “If chemical type X is present, produce chemical type
Y ” where X is a protein marker of cancer and Y is the chemo drug. Or it could be more complicated:
produce Z if X is present and Y is not present or vice-versa (i.e, an exclusive-or function). Or it could be
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time-varying computation: produce Z if the rate of change of X is within certain bounds (i.e., band-pass
filtering). Exciting recent work along these lines includes [3] and [55].

This work is a continuation of our current research funded by an NSF EAGER grant, CCF-0946601. In
prior work, we had described a computational constructs for chemical reaction networks: logical operations
such as copying, comparing and incrementing/decrementing [52]; programming constructs such as “for” and
“while” loops [53]; and arithmetic operations such as multiplication, exponentiation and logarithms [52,
53]. The EAGER grant has allowed use to make significant advances in synthesizing digital processing
(DSP) operations such as filtering [23]. As we describe below, we have provided the first conceptual designs
of sequential iterative computation. Indeed, DSP systems are non-terminating in nature, i.e., the same
computation is repetitively executed. Input signals are sampled and processed iteratively. As a proof of
concept, we have described robust finite-impulse response (FIR) and infinite-impulse (IIR) filters. We have
mapped these designs to DNA strand-displacement reactions.

Unlike previous schemes for biomolecular computation, ours produces designs that are dependent only
on coarse rate categories for the reactions (“fast” and “slow”). Given such categories, the computation
is exact and independent of the specific reaction rates. In particular, it does not matter how fast any
“fast” reaction is relative to another, or how slow any “slow” reaction is relative to another – only that
“fast” reactions are fast relative to “slow” reactions. We achieve iterative computation through a self-timed,
three-phase synchronization protocol that we call RGB (for Red, Blue and Green) that transfers quantities
between molecular types based on the absence of other types. As we describe below, the scheme can be used
to implement delay elements. Together with biomolecular constructs for operations such addition, scalar
multiplication, and fanout, we present a methodology for implementing arbitrary DSP operations.

The PIs on this project Keshab Parhi and Marc Riedel are, respectively, experts in VLSI signal processing
architectures and molecular computing. Together, our collaboration over last two years has led to co-
supervision of three students, Hua Jiang, Philip Senum and Sasha Kharam, working on these topics. This
grant will allow us to continue our collaboration beyond the duration of the EAGER grant which expires in
July 2011.

Specifically, this project will address the following design challenges: transforming time-domain signals
into spectral-domain signals by Fast Fourier Transform (FFT) operations; implementing general filtering
operations such as high, low, and band-pass filtering; implementing crosstalk cancellation; and implementing
decision equalization operations. (In all cases, the inputs and outputs are time-varying quantities of molecular
types. For instance, in the case of an FFT, the output is a time-varying quantity that corresponds to
the frequency of the changes in the input quantity.) Bipolar encoding techniques will be developed for
implementing filters with negative coefficients. The impact of specific DSP constructs such as pipelining,
retiming, folding and unfolding on biomolecular designs will be investigated. The methodology will be
developed and evaluated both in a conceptual sense and in a practical sense. All DSP designs will be
translated to DNA-strand displacement reactions.

3 Computational Model

The theory of reaction kinetics underpins our understanding of biological and chemical systems [22]. It is
a simple and elegant formalism: chemical reactions define rules according to which reactants form prod-
ucts; each rule fires at a rate that is proportional to the quantities of the corresponding reactants that are
present. On the computational front, there has been a wealth of research into efficient methods for simulat-
ing chemical reactions, ranging from ordinary differential equations (ODEs) [12] to stochastic simulation [15].

Consider the reaction
a + b

fast−→ 2c.

When this reaction fires, one molecule of a is consumed, one of b is consumed, and two of c are produced.
(Accordingly, a and b are called the reactants and c the product.) The rate of the reaction is proportional to
the quantities of a and b present, as well as to the reaction constant, in this case “fast.” Although we refer
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to rates in relative and qualitative terms – e.g., “fast” vs. “slow” – these are, in fact, quantitative values
that are either deduced from biochemical principles or measured experimentally.

A description of a biomolecular system in terms of a collection of reactions is analogous, in some ways,
to a transistor netlist. Stochastic simulation and ODE solvers are, in some ways, analogous to SPICE [35].
As with an electronic system, once a biomolecular system is specified, the task of simulating it is well
understood. Indeed, the mindset of analysis still prevails in this domain: a set of chemical reaction exists,
designed by nature and perhaps modified by human engineers; the objective is to understand and characterize
its behavior. Comparatively little work has been done at a conceptual level in tackling the inverse problem
of synthesis: how can one design a set of chemical reactions that implement specific behavior?

4 Proof of Concept

We illustrate our design methodology with a detailed example: a finite impulse response (FIR) filter. To
elucidate the concepts, we present the design in simplified form first and then with some refinements.

4.1 Simplified Form
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Figure 1: A two-tap moving average filter.

An FIR filter is shown in Figure 1a. This system computes a moving average: given a time-varying
input signal X, the output Y is a smoother version of it. More precisely, the output is one-half the current
input value plus one-half the previous value. We implement a biomolecular moving-average filter with the
following reactions.

g + X
slow−→ A + C

2C
fast−→ R

2A
fast−→ Y

(1)

b + R
slow−→ G

r + G
slow−→ B

g + B
slow−→ Y

(2)

∅ slow−→ r

R + r
fast−→ R

Y + r
fast−→ Y

∅ slow−→ g

G + g
fast−→ G

∅ slow−→ b

B + b
fast−→ B

X + b
fast−→ X

(3)

3



Here the symbol ∅ indicates “no reactants” meaning the products are generated from a large or replen-
ishable source. The molecular types are labeled in Figure 1b. In the proposed scheme, there are three phases
of computation. We color code the molecular types in corresponding color categories: Y and R in red; G in
green; and X and B in blue.

In the group of reactions (1), the quantity of the input X is transfered to the same quantity of types
A and C (a fanout operation). Then the quantities of A and C are reduced to half (scalar multiplication
operations). Then the quantity of A is transfered to the output Y and the quantity of C is transfered to R,
the first of three types of a delay operation. The next two are G and B. Once the signal has moved through
the delay operation, the quantity of B is transfered to the output Y . (Since this quantity is combined with
the quantity of Y produced from A, this is an addition operation.)

Within each delay operation, quantities are transfered from R to G, and then to B; this is accomplished
by the group of reactions (2). Transfers between two color categories are enabled by the absence of the third
category: red goes to green in the absence of blue; green goes to blue in the absence of red; and blue goes
to red in the absence of green. This handshaking ensures that the delay element takes a new value only
when it has finished processing the previous value. It is implemented by the group of reactions (3). These
continually generate the types r, g, and b that we call “absence indicators.” These types only persist in
the absence of the corresponding signals: r in the absence of R and Y ; g in the absence of G; and b in the
absence of X and B. They only persist in the absence because otherwise “fast” reactions consume them
quickly.

Note that the quantity of the input X is sampled in the green-to-blue phase. We assume that an external
source supplies the input. The output Y is produced in the blue-to-red phase. We assume that an external
sink consumes these molecules.

4.2 Refinement

BGR

Delay Element

Figure 2: RGB cycle in isolation.

The essential aspect of the FIR design is that, within the RGB
sequence for a delay operation, the full quantity of the preced-
ing type is transfered to current type before the transfer to the
succeeding type begins. For example, the reaction

r + G
slow−→ B (4)

should not fire until the reaction

b + R
slow−→ G (5)

has fired to completion.
However, the rate of a reaction is proportional to the quanti-

ties of its reactants. As molecules of R are transfered to G, the
quantity of R decreases and so Reaction (5) slows down. With
smaller quantities of R present, there will be larger quantities of the corresponding absence indicators r
present. Meanwhile, the quantity of G increases so the rate of Reaction (4) increases. As a result, the
transfer from G to B starts well before the transfer from R to G is complete. Similarly, the transfers from B
to R and from R to G start earlier than they should. As a result, the iterative computation for the operation
of our FIR filter fails.

To examine this issue, let us consider the RGB cycle in isolation, as illustrated in Figure 2. Suppose that
this cycle is implemented with the following reactions:

b + R
slow−→ G

r + G
slow−→ B

g + B
slow−→ R

(6)
∅ slow−→ r

∅ slow−→ g

∅ slow−→ b

(7)

R + r
fast−→ R

G + g
fast−→ G

B + b
fast−→ B.

(8)
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Figure 3: Simulation of the RGB Transfer Reac-
tions (6)–(8).

Suppose that the initial quantity of R is set to
some non-zero amount, and the initial quantity of
the other types is set to zero. We will get an oscilla-
tion among the quantities of R, G, and B, but this
oscillation is damped. This is confirmed by the ex-
perimental results in Figure 4.2. Here we simulated
the chemical kinetics for Reaction (6)–(8) [34]. In
this figure, we see that the quantities oscillate with
an attenuating envelope and converge to one third of
the initial quantity of R.

A refinement to the RGB scheme solves this prob-
lem. We include reactions that accelerate and isolate
the transfers in each phase. For the R to G phase,
we add the reactions:

2G
slow−→ IG

IG
fast−→ 2G

IG + R
fast−→ 3G.

(9)

In these reactions, two molecules of G combine with
one molecule of R to produce three molecules of G. The first step in this process is reversible: two molecules
of G can combine, but in the absence of any molecules of R, the combined form will dissociate back into
G. So, in the absence of R, the quantity of G will not change much. In the presence of R, the sequence of
reactions will proceed, producing one molecule of G for each molecule of R that is consumed. Due to the
first reaction 2G

slow−→ IG, the transfer will occur at a rate proportional to the square of the quantity of G.1

Unlike Reaction (5), the rate of transferring R to G with Reactions (9) does not depend on the quantity
of R; rather it has a quadratic dependence on the quantity of G, so the more G we have, the faster G is
produced.
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Figure 4: Simulation of the RGB transfers with the
Reactions (9), (10), and (11).

Symmetrically, we include the following reactions
to transfer quantities from G to B

2B
slow−→ IB

IB
fast−→ 2B

IB + G
fast−→ 3B,

(10)

and from B to R:

2R
slow−→ IR

IR
fast−→ 2R

IR + B
fast−→ 3R.

(11)

With the reactions (9), (10), and (11), we get the
oscillatory behavior that we need: these reactions ef-
fectively speed up transfers between color categories
as molecules in each category are “pulled” to the next
one. Figure 4.2 shows a simulation of the chemical
kinetics. We see that the quantities of R, G, and B
oscillate with constant amplitudes; there is no atten-
uation at all.

1A rigorous discussion of chemical kinetics is beyond the scope of this proposal. Interested readers can consult the refer-
ences [15, 14, 16] and [17].
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With these refinements, the full set of reactions for the moving average filter is:

2R
slow−→ IR

IR
fast−→ 2R

IR + X
fast−→ A + C + 2R

2G
slow−→ IG

IG
fast−→ 2G

IG + R
fast−→ 3G

2B
slow−→ IB

IB
fast−→ 2B

IB + G
fast−→ 3B

2Y
slow−→ IY

IY
fast−→ 2Y

IY + B
fast−→ 3Y,

(12)

g + X
slow−→ A + C

2C
fast−→ R

2A
fast−→ Y

b + R
slow−→ G

r + G
slow−→ B

g + B
slow−→ Y,

(13)

∅ slow−→ r

R + r
fast−→ R

Y + r
fast−→ Y

∅ slow−→ g

G + g
fast−→ G

∅ slow−→ b

B + b
fast−→ B

X + b
fast−→ X.

(14)

4.3 Simulation Results
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Figure 5: A biquad filter.

We present simulation results for our biomolecular implementations of the two-tap moving-average filter,
shown in Figure 1a, as well as a biquad filter, shown in Figure 5. We used Gillespie’s stochastic simulation
algorithm (SSA) [15, 14]. It performs a Monte Carlo simulation of the chemical kinetics. First, we performed
simulations with a rate of 1 for “slow” and a rate of 100 for “fast.” We generated 1000 trajectories and
computed the mean values. The results for the two filters are plotted in Figures 6a and 6b.

The figures show the quantity of the input and output – types X and Y respectively – as a function of
computational cycles. A cycle begins when we supply input molecules. It completes once we remove all the
output molecules. (We always allow sufficient time for each cycle to complete before initiating the next.) For
the moving average filter, the input signal is composed of a low-frequency component and a high-frequency
component. In the output signal, the high-frequency component is almost filtered out. For the biquad filter,
the input signal contains abrupt changes. The output signal is a smoothed version of the input signal. In
both cases, the simulation results show nearly perfect agreement with the expected behavior.
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(a) Simulation results of moving average filter.
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(b) Simulation results of biquad filter.

Figure 6: Simulation results of two filters.

Table 1: Relative error in simulations.
λ Moving Average Biquad
10 3.2479× 10−3 1.8531× 10−3

100 8.3496× 10−4 1.6890× 10−3

1000 5.2885× 10−4 1.5048× 10−3

Next, we performed a sequence of simulations with different values for the fast-to-slow ratio, λ. We used
the same input sequence each time, and varied λ from 10 to 1000, each time generating 1000 trajectories.
The average relative errors for both filters for different values of λ are shown in Table 1.

We see that the relative error decreases as λ increases. This is because a higher λ lowers the probability
that a slow reaction misfires: i.e., it fires before all fast reactions are complete. We see that generally the
biquad filter has a higher error than the moving-average filter. This is expected, since the IIR filters involve
feedback that leads to error accumulation. In addition, there are more reactions for this filter; having more
reactions increases the chance of obtaining an incorrect firing order.

5 Proposed Work

Building upon this preliminary work, this project will develop a complete methodology for synthesizing DSP
operations with biomolecular reactions. DSP systems are generally specified in terms of four basic modules:
fanout, scalar multiplication, addition, and delay elements. Biomolecular constructs for these four modules
were illustrated with the moving-average filter in the previous section.

The first deliverable of the project will be a methodology for synchronize transfers through delay elements
with a clock signals. Then, building upon such a framework for sequential computation, the project will
deliver:

• A methodology for performing time-to-frequency domain transformations with Fast Fourier Transforms
(FFTs).

• A methodology for performing decision-feedback equalization (DFE).

• A methodology for echo and near-end crosstalk (NEXT) cancellation.
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Figure 7: Block diagram of a synchronous sequential system.

• A methodology for complex filter designs, including those with negative coefficients.

Finally, the impact of specific DSP constructs such as pipelining, retiming, folding and unfolding on biomolec-
ular designs will be investigated.

5.1 Synchronous Sequential Computation

The general structure of our design is illustrated in Figure 7. As in an electronic system, our molecular
system consists of separate reactions that implement computation and memory. A clock signal synchronizes
transfers between computation and memory. For the computational reactions, we refer the reader to prior
work [23, 52, 53]. Operations such as addition and scalar multiplication are straightforward. Operations
such as multiplication, exponentiation, and logarithms are trickier. These can be implemented with reactions
that implement iterative constructs analogous to “for” and “while” loops. (They do so robustly and exactly,
without any specific dependence on the rates.)

One of the main contributions of project will be a novel method for clock signal generation and for
implementing memory.

5.1.1 Clock Generation

In electronic circuits, a clock signal is generated by an oscillatory circuit that produce periodic voltage
pulses. For a molecular clock, we choose reactions that produce sustained oscillations in the chemical
concentrations. With such oscillations, a low concentration corresponds to logical value of zero; a higher
concentration corresponds to a logical value of one. Techniques for generating chemical oscillations are very
well-known in the literature. Classic examples include the Lotka-Volterra, Brusselator and Arsenite-Iodate-
Chlorite systems [11, 25]. However, none of these schemes are quite suitable for synchronous sequential
computation. We require that the clock signal be perfectly symmetrical, with abrupt transitions between
the phases.

We will develop a design for a four-phase chemical oscillator. The clock phases will be represented by
molecular types R(ed), G(reen), B(lue), and Y (ellow). First consider the reactions in Figure 8. Reactions 15
generates molecular types r, g, b, and y slowly and constantly. Here the symbol ∅ indicates “no reactants”
meaning the products are generated from a large or replenishable source. In Reactions 16, the types R, G,
B, and Y quickly consume the types r, g, b, and y, respectively. Call R, G, B, and Y the phase signals and
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∅ slow−→ r

∅ slow−→ g

∅ slow−→ b

∅ slow−→ y

(15)

R + r
fast−→ R

G + g
fast−→ G

B + b
fast−→ B

Y + y
fast−→ Y.

(16)

Figure 8: Reactions for a 4-Phase Oscillator.

r, g, b, and y the absence indicators. The latter are only present in the absence of the former. The reactions

R + y
slow−→ G

G + r
slow−→ B

B + g
slow−→ Y

Y + b
slow−→ R

(17)

transfer one phase signal to another, in absence of its previous one. The essential aspect is that, within the
RGBY sequence, the full quantity of the preceding type is transfered to the current type before the transfer
to the succeeding type begins.

To achieve sustained oscillation, we introduce positive feedback. This is provided by reactions

2G
slow−⇀↽−
fast

IG

R + IG
fast−→ 3G

2B
slow−⇀↽−
fast

IB

G + IB
fast−→ 3B

2Y
slow−⇀↽−
fast

IY

B + IY
fast−→ 3Y

2R
slow−⇀↽−
fast

IR

Y + IR
fast−→ 3R.

(18)

Consider the first two reactions. Two molecules of G combine with one molecule of R to produce three
molecules of G. The first step in this process is reversible: two molecules of G can combine, but in the
absence of any molecules of R, the combined form will dissociate back into G. So, in the absence of R, the
quantity of G will not change much. In the presence of R, the sequence of reactions will proceed, producing
one molecule of G for each molecule of R that is consumed. Due to the first reaction 2G

slow−→ IG, the transfer
will occur at a rate that is super-linear in the quantity of G; this speeds up the transfer and so provides
positive feedback.2

Suppose that the initial quantity of R is set to some non-zero amount, and the initial quantity of the
other types is set to zero. We will get an oscillation among the quantities of R, G, B, and Y . We choose
two nonadjacent phases, R and B, as the clock phases.

Our scheme for chemical oscillation works remarkably well. Figure 9 shows the concentrations of R
and B as a function of time, obtained through ordinary differential equation (ODE) simulations of the
reactions 15, 16, 17 and 18. We note that the R (red) and B (blue) phases are non-overlapping.

2A rigorous discussion of chemical kinetics is beyond the scope of this paper. Interested readers can consult [11].

9



0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Unitless Time

U
n

it
le

s
s
 C

o
n

c
e

n
tr

a
ti
o

n

 

 

R

B

Figure 9: ODE simulation of the chemical kinetics of the proposed clock.

5.1.2 Memory

To implement sequential computation, we must store and transfer signals across clock cycles. In electronic
systems, storage is typically implemented with flip-flips. In our molecular system, we implement storage and
transfer using a two-phase protocol, synchronized on phases of our clock. Every memory unit Si is assigned
two molecular types D′

i and Di. Here D′
i is the first stage and Di the second.

The blue phase reactions are:

B + Di
fast−→ Computations + B

Computations
fast−→ D′

j .
(19)

Every unit Si releases the signal it stores in its second stage Di. The released signal is operated on by
reactions in computational modules. These generate results and push the them into the first stages of
succeeding memory units. Note that D′

j molecules will be the first stage of any succeeding memory unit Sj

along the signal path from Si.
The red phase reactions are

R + D′
i

fast−→ Dj + R. (20)

Every unit Si transfers the signal it stores in D′
i to Dj , preparing for the next cycle. For the equivalent of

delay (D) flip-flops in digital logic, i = j. For other types of memory units, i and j can be different. For
example, for a toggle (T) flip-flop, Sj is the complementary bit of Si: D′

i −→ Dj and D′
j −→ Di toggle the

pair of bits in each clock cycle. The transfer diagram for our memory design is shown in Figure 10.

5.2 More Sophisticated FIR/IIR Filters

The project will investigate design techniques for implementing sophisticated DSP filtering operations. In all
of our existing designs, the signals are positive numbers. This is not surprising since the signals correspond to
quantities of molecular types; obviously, we cannot have negative quantities of molecules. And yet, negative
numbers are critical for many DSP operations.

We will investigate techniques for implementing negative values through bipolar encodings: a signal X
will be represented by two molecular types Xp and Xn, where Xp represents the positive component, and
Xn the negative component. Accordingly, X equals [Xp] − [Xn]. Such a representation is similar to a
signed binary number representation (SBNR) representation in electronic designs. Concepts established for
operating on redundant number system will be explored. Consider the reaction

Xp + Xn
fast−→ ∅ (21)
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Figure 10: The two-phase memory transfer scheme.

It cancels out equal-valued quantities [Xp] and [Xn] whenever possible. Given a representation of negative
numbers, subtraction can be implemented by addition of negative numbers.

With a scheme for representing negative numbers, it will possible to implement negative-coefficient scalar
multipliers:

y = −c2

c1
x

is implemented by
c1Xp −→ c2Yn

c1Xn −→ c2Yp.
(22)

With negative-coefficient multipliers, it will be possible to implement a broad range of filters, including
band-pass and high-pass filters. The proposed effort will be directed towards integrating these concepts with
various digital filters such as FIRs and IIRs. The kinetics and robustness of these reactions will be studied.

5.3 FFT

Given a robust biomolecular clocking scheme, we will implement Fast Fourier Transforms (FFTs). The
FFT operation is used in spectral or frequency-domain analysis of systems. A variety of FFT architectures
have been proposed [6, 13, 19, 20, 51]. The signal flow graph and and a possible 2-parallel architecture
of a 16-point FFT system are shown in Figures 11a and 11b, respectively. A simple example of a 4-point
two-parallel FFT system is shown in Figure 11c.

An FFT operation is predicated on a representation of complex numbers. To this end, we will use two
molecular types X∗

p and X∗
n, assigned to the complex part of a signal X, in addition to Xp and Xn. We

include a reaction of the form:
X∗

p + X∗
n

fast−→ ∅. (23)

There are several switches in FFT systems. Each selects one of the two incoming signals alternatively
in different cycles. To achieve this switching functionality in our molecular design, we use two alternating
selection signals. With the techniques proposed in Section 5.1, we generate these with a pair of D-flip-flops,
as shown in Figure 12. We implement this computation with following reactions:

R + S′
0

fast−→ S0 + R

R + S′
1

fast−→ S1 + R

B + S1
fast−→ S′

0 + B

B + S0
fast−→ S′

1 + B

(24)

The transfer reactions enabled by S′
1 or S′

0 implement the switches.
With the implementation of clock, delay elements, switch, and computational modules, and representation

of negative and complex numbers, a complete design of an FFT system will be possible.
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Figure 11: Fast Fourier Transform

5.4 Decision-Feedback Equalization

S’0 S1

S’1S0

CLK

Figure 12: Generating the selec-
tion signals.

Decision-feedback equalization exploits prior decisions to eliminate the
time-dispersion of signals [21, 18, 39, 47, 38, 36, 9]. A simple decision-
feedback equalizer (DFE) is shown in Figure 13. In this system, the
previous output signals are filtered and added to or subtracted from new
input signal. DFE operations are used to cancel crosstalk and other types
of interference from signal paths.

Making use of our comparator module, described in [52], will imple-
ment the requisite thresholding operation. Based upon the synchroniza-
tion technique discussed above, we will implement the equalizer.
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5.5 Echo and NEXT Cancellation

Will will apply our methodology to the design of systems for echo and
near-end crosstalk (NEXT) cancellation. A diagram for echo cancellation is shown in Figure 14.

Figure 14: A diagram for echo cancellation.

5.6 Impact of High-Level Transformation

w (n)2

w (n)1

a

b

a

b

y(n)
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x(n)
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D

(b)
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D 2D
w(n)

D

x(n)

(a)

(1)

(2)

(2)

(1)

(2)

(2)

(1) (1)

Figure 15: (a) Original system. (b) System after retiming. (Taken from [37].)

D

DD

Figure 13: A decision-feedback equalizer.

In DSP systems, high-level transforms tech-
niques, such as retiming, unfolding, and folding, are
used to manipulate a circuit-level design while pre-
serving the functionality [37]. The goal is to modi-
fied the circuit to improve area, computation speed,
power and other metrics.

Retiming is a transformation that changes the
locations of delay elements in circuits yet perserves
the functionality, as shown in Figure 15. By rear-
ranging the delay elements, we may minimize the
total the number delay operations. Unfolding is a
transformation that creates more than one iteration
of a DSP program, as shown in Figure 16. It is
used for high-speed processing and low-cost compu-
tations. Folding transformations are used for time-
multiplexing functional units, such as computational
modules, as shown in Figure 17. They provides a
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Figure 16: (a) Original system. (b) System after unfolding. (Taken from [37].)
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Figure 17: (a) Original system. (b) System after folding. (Taken from [37].)

means for trading system complexity for processing
speed.

In biomolecular systems, the total number of reactions and the total number of molecular types are typ-
ically the relevant metrics of system complexity. We will investigate the impact of high-level transformation
on these metrics.

6 Educational and Outreach Plan

6.1 Minority Involvement Plan

The PIs will work with the University of Minnesotas College of Science and Engineering Diversity and
Outreach program to involve underrepresented students in research. This program manages the NSF-funded
North Star STEM Alliance–Minnesotas Louis Stokes Alliance for Minority Participation (LSAMP). One of
the core principles of the Diversity and Outreach program is that Mentoring and introduction of research
opportunities early in the undergraduate career is the best practice for retention. Through participation in
the North Star programs, the students will present their research to North Star fellows to demonstrate their
research. They can choose from a selection of outreach events that are provided by the North Star program
including a Kickoff Day at the beginning of each year and a spring symposium in the spring semester to
showcase research opportunities at the university. Each student will participate in one of these events during
their fellowship. The undergraduate students attending these presentations are encouraged by North Star
program to seek research positions in labs. North Star also supplies funding for underrepresented students
to attend conferences when mentored by a graduate student to increase the exposure of the students to the
research community beyond the Universitys laboratories.
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6.2 Undergraduate Involvement in Research

The University of Minnesota offers many research opportunities for undergraduate research. Undergraduate
research is supported by the university through the Undergraduate Research Opportunity Program. This is
a competitive program that requires the students to write a proposal which gets reviewed and scored. The
UROP program funds approximately 80% of the applications providing the students with $1400 stipend and
$300 for lab supplies. These students generally are mentored by a graduate student in the lab. This provides
graduate students the opportunity to learn mentoring skills and to develop interest in their field. The
undergraduates can present their research at the end of the year in an undergraduate research symposium.

6.3 K-12 Outreach Plan

The College of Science Engineering (CSE) offers a summer high school student outreach program, Exploring
Careers in Engineering and Physical Science (ECEPS). This program offers students a handson introduction
to engineering, science and math opportunities on the University of Minnesota Twin Cities campus by
providing the students tours, along with short projects, in different labs around the campus. This program
is designed to appeal to and reach both girls and underrepresented minorities with an interest in the STEM
disciplines. In particular, two of the four possible oneweek sessions are devoted to girls only.

6.4 Integration of Research into Course Curriculum

PI Riedel will integrate results from this research into a new course EE-5393 “Circuits, Computations and
Biology” offered jointly through the ECE Department and the new Biomedical Informatics and Computa-
tional Biology Program at the University of Minnesota. PI Parhi teaches the courses EE-5329 “VLSI Signal
Processing” and EE-5542 “Adaptive Filters.” Students in these classes acquire advanced expertise in digital
signal processing. (Some of the channel estimation effort through adaptive algorithms in a biochemical envi-
ronment may be pursued in the EE-5542 if data become available.) These three courses provide an excellent
foundation for the research topic of this proposal.

7 Results of Prior NSF Support

PI Parhi has two active NSF grants: 1) Award CCF-0811456: “Collaborative Research: CPA-DA: Noise-
Aware VLSI Signal Processing: A New Paradigm for Signal Processing Integrated Circuit Design in Nanoscale
Era,” started on 9/1/2008; and 2) EAGER grant CCF-0946601: “Synthesizing Signal Processing Functions
with Biochemical Reactions” (with M. Riedel) started on 9/1/09. The CCF-0811456 grant has enabled us to
create a tool for estimation of power consumption by estimating switching activity in arithmetic circuits, to
reduce power consumption in frequency-selective FIR filters by correction circuitry, and to improve reliability
of demodulation in orthogonal frequency division multiplexing (OFDM) systems. These results have been
published in [27, 28, 29, 30, 31, 32, 33].

PI Riedel has two active NSF grants: 1) CAREER Award 0845650: “Computing with Things Small,
Wet, and Random – Design Automation for Digital Computation with Nanoscale Technologies and Bi-
ological Processes” started on 9/15/2009; and 2) EAGER grant CCF-0946601 “Synthesizing Signal Pro-
cessing Functions with Biochemical Reactions” (with K. Parhi) started on 9/1/09. The CAREER award
has established novel and transformative approaches to design automation guided by physical views of
computation. A broad theme is the application of expertise from an established field, digital circuit
design, to new fields, such as nanotechnology and synthetic biology. The results have been published
in [2, 7, 23, 24, 26, 41, 42, 43, 44, 45, 46, 52, 53].
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