
EE 1301 UMN

Introduction to Computing Systems Fall 2013

⊕ ⊕

Lab # 6

Collaboration is encouraged. You may discuss the problems with other students, but you

must write up your own solutions, including all your C programs, by yourself. If

you submit identical or nearly identical solutions to someone else, this will be considered a

violation of the code on academic honesty.

In this lab, we’ll study a very useful data structure: a linked list. A linked list consists of a

sequence of data records. In each record, there is a pointer (i.e., a “link”) to the next record.

Linked lists are often used to implement other data structures such as stacks, queues and,

hash tables. The principal benefit of a linked list over an array is that items can be easily

added to and removed from the list. The disadvantage is that one cannot jump to a given

point in the list; one has to follow all the links to get there.

We’ll use a simple structure for each record: some data (an int) and a pointer to the next

record. (Instead of an int, imagine that we had a big chunk of data.)

struct record {

int data; /* data */

struct record *next; /* pointer to next record */

};

Note that, in C, a pointer can have a special value called NULL which indicates it doesn’t

point to anything. Consider the following three functions. These add a record to the list,

remove a record from the list, and search the list for a specific data value. Note that pointers

and pointers to pointers are used.

struct record *list_add(struct record *p, int i)

{

struct record *n = (struct record *) malloc(sizeof(struct record));

if (n == NULL) return NULL;

n->next = p; /* the previous record (*p) now becomes the next record */

p = n; /* add new empty record to the head of the list */

EE 1301, Fall ’13 2

n->data = i;

return p;

}

void list_remove(struct record *p) /* remove head */

{

if (p != NULL) {

struct record *n = p;

p = p->next;

free(n);

}

}

struct record *list_search(struct record *n, int i)

{

while (n != NULL) {

if (n->data == i) return n;

n = n->next;

}

return NULL;

}

We can print the list, starting at the record pointed by n, with the following function (note

that %p prints out a pointer value):

void list_print(struct record *n)

{

if (n == NULL) {

printf("list is empty\n");

}

while (n != NULL) {

printf("address %p, next address , %p, data %d\n", n, n->next , n->data);

n = n->next;

}

}

In order to create a list populated with data, we’ll use the rand() function in C. This

function returns a sequence of pseudo-random numbers (i.e., random looking numbers). It

returns a different sequence for every seed value. You can set the seed value as follows:

srand(atoi(argv [1]));

EE 1301, Fall ’13 3

Then you can call the rand() function as follows to create records with pseudo-random

numbers between 0 and 99:

for (i = 0; i < atoi(argv [2]); i++) {

list_add (&l, rand() % 100);

}

Here is a main() function that uses the first argument as the seed; the second argument

as the list length; and the third argument as an integer to search for. If the list contains a

record with the third argument, the program prints “found”.

#include "stdafx.h"

#include <stdio.h> /* for printf */

#include <stdlib.h> /* for malloc */

int main(int argc , char **argv)

{

int i;

struct record *l = NULL;

struct record *s;

srand(atoi(argv [1]));

for (i = 0; i < atoi(argv [2]); i++) {

l = list_add(l, rand() % 100);

}

list_print(l);

s = list_search(l, atoi(argv [3]));

if (s != NULL) {

printf("found\n");

}

return 0;

}

Problem

• Write a program that accepts two arguments: the seed value and the list length. It

prints the list; then it deletes all records with value 13; then it prints out the list

again.

• Write a program that accepts two arguments: the seed value and the list length. It

EE 1301, Fall ’13 4

prints the list; then it deletes each record before a record with value 13; then it prints

out the list again.

(Isn’t it idiotic that some buildings don’t have a floor 13? The floors are numbered 1 - 12,

and then 14 and above.)

