
Synthesizing Logical Computation
on Stochastic Bit Streams

Weikang Qian and Marc D. Riedel
Department of Electrical and Computer Engineering,

University of Minnesota, Twin Cities
{qianx030, mriedel}@umn.edu

ABSTRACT
Most digital systems operate on a positional representation of

data, such as binary radix. A positional representation is a compact
way to encode signal values: in binary radix, 2n distinct values
can be represented with n bits. However, operating on it requires
complex logic: in each operation such as addition or multiplication,
the signal must be “decoded,” with the higher order bits weighted
more than the lower order bits. We advocate an alternative repre-
sentation: random bit streams where the signal value is encoded by
the probability of obtaining a one versus a zero. This representation
is much less compact than binary radix. However, complex opera-
tions can be performed with very simple logic. For instance, multi-
plication can be performed with a single AND gate. Also, because
the representation is uniform, with all bits weighted equally, it is
highly tolerant of soft errors (i.e., bit flips). In this paper, we present
a general method for synthesizing digital circuitry that computes on
such stochastic bit streams. Our method can be used to synthesize
arbitrary polynomial functions. Through polynomial approxima-
tions, it can also be used to synthesize non-polynomial functions.
Experiments on functions used in image processing show that our
method produces circuits that are highly tolerant of input errors.
The accuracy degrades gracefully with the error rate. For applica-
tions that mandate simple hardware, producing relatively low pre-
cision computation very reliably, our method is a winning proposi-
tion.

1. INTRODUCTION
Consider digital computation that is based on a stochastic rep-

resentation of data: each real-valued number x (0 ≤ x ≤ 1) is
represented by a sequence of random bits, each of which has prob-
ability x of being one and probability 1 − x of being zero. These
bits can either be serial streaming on a single wire or in parallel on
a bundle of wires. When serially streaming, the signals are proba-
bilistic in time, as illustrated in Figure 1(a); when in parallel, they
are probabilistic in space, as illustrated in Figure 1(b). Throughout
this paper, we frame the discussion in terms of serial bit streams.
However, our approach is equally applicable to parallel wire bun-
dles. Indeed, we have advocated this sort of stochastic representa-
tion for technologies such as nanowire crossbar arrays [1].

Consider the problem of designing digital circuits that operate
on stochastic bit streams. We focus on combinational circuits, that
is to say, memoryless digital circuits built with logic gates such
as AND, OR, and NOT. For such circuits, suppose that we sup-
ply stochastic bit streams as the inputs; we will observe stochastic
bit streams at the outputs. Accordingly, combinational circuits can
be viewed as constructs that accept real-valued probabilities as in-
puts and compute real-valued probabilities as outputs.1 An illus-
tration of this is shown in Figure 2. The circuit, consisting of an

1Throughout the paper, when we say “logical computation” or just “com-
putation” on stochastic bit streams we mean combinational logic operating
on such bit streams.

(a) (b)

x = 3/8

x = 3/8

0, 1, 0, 1, 0, 0, 1, 0

0

1
0
1
0
0
1
0

Figure 1: Stochastic representation: (a) A stochastic bit stream; (b) A
stochastic wire bundle. A real value x in the unit interval [0, 1] is repre-
sented as a bit stream or a bundle. For each bit in the bit stream or the
bundle, the probability that it is one is x.

AND

1,0,0,1,0,1,1,0

X3

X1

Y
1,1,1,1,1,1,1,1

1,0,0,1,0,1,1,0

0,1,0,0,0,0,1,0

X2

OR

x1: 4/8

4/8

1,1,0,1,0,1,1,0

x2: 8/8 y: 5/8

x3: 2/8

Figure 2: An example of logical computation on stochastic bit streams,
implementing the arithmetic function y = x1x2 + x3 − x1x2x3. We see
that, with inputs x1 = 1/2, x2 = 1 and x3 = 1/4, the output is 5/8, as
expected.

AND gate and an OR gate, accepts ones and zeros and produces
ones and zeros, as any digital circuit does. If we set the input bits
x1, x2 and x3 to be one randomly and independently with specific
probabilities, then we will get an output y that is one with a spe-
cific probability. For instance, given input probabilities x1 = 1/2,
x2 = 1 and x3 = 1/4, the circuit in Figure 2 produces an output y
with probability 5/8.2 The figure illustrates computations with bit
lengths of 8.

Compared to a binary radix representation, a stochastic repre-
sentation is not very compact. With M bits, a binary radix rep-
resentation can represent 2M distinct numbers. To represent real
numbers with a resolution of 2−M , i.e., numbers of the form a

2M

for integers a between 0 and 2M , a stochastic representation re-
quires a stream of 2M bits. The two representations are at opposite
ends of the spectrum: conventional binary radix is a maximally
compressed, positional encoding; a stochastic representation is an
uncompressed, uniform encoding.

A stochastic representation, although not very compact, has an
advantage over binary radix in terms of error tolerance. Suppose
that the environment is noisy: bit flips occur and these afflict all the

2When we say “probability” without further qualification, we mean the
probability of obtaining a one.



HA
a1

HA
b1

a0

b1

FA
a0

b2

a2 b0 a1 b0

a1
FA

b2

a2 b1

HAFA

a0 b0

c0

c1

c2

c3c4c5

a2 b2

a2 a1 a0 b2 b1 b0

c2 c1 c0c5 c4 c3

a b

c

Figure 3: Multiplication on a conventional representation: a carry-save
multiplier, operating on 3-bit binary radix encoded inputs A and B. “FA”
refers to a full adder and “HA” refers to a half adder.

bits with equal probability. Compare the two representations for
a fractional number of the form a

2M for integers a between 0 and
2M . With a binary radix representation, in the worst case, the most
significant bit gets flipped, resulting in a change of 2M−1

2M = 1
2

. In
contrast, with a stochastic representation, all the bits in a stream of
length 2M have equal weight. Thus, a single bit flip always results
in a change of 1

2M , which is small in comparison.
With the stochastic representation, noise does not introduce more

randomness. The bit streams are random to begin with, biased to
specific probability values. Rather, noise distorts the bias, produc-
ing streams with different probabilities than intended. However,
this change is small. With a bit flip rate of ε, the change is bounded
by ε.3

A stochastic representation also has the advantage over binary
radix in the amount of hardware needed for arithmetic computa-
tion. Consider multiplication. Figure 3 shows a conventional de-
sign for a 3-bit carry-save multiplier, operating on binary radix-
encoded numbers. It consists of 9 AND gates, 3 half adders and 3
full adders, for a total of 30 gates.4

In contrast, with a stochastic representation, multiplication can
be implemented with much less hardware: we only need one AND
gate. Figure 4 illustrates the multiplication of values that are rep-
resented by stochastic bit streams. Assuming that the two input
stochastic bit streams A and B are independent, the number repre-
sented by the output stochastic bit stream C is

c = P (C = 1) = P (A = 1 and B = 1)

= P (A = 1)P (B = 1) = a · b.
(1)

So the AND gate multiplies the two values represented by the stochas-
tic bit streams. In the figure, with bit streams of length 8, the values
have a resolution of 1/8.

Why is multiplication so simple with a stochastic representation

3In fact, with a bit flip rate of ε, a number p in the stochastic representation
is biased to a number p(1 − ε) + (1 − p)ε, a change of (1 − 2p)ε in the
value.
4A half adder can be implemented with one XOR gate and one AND gate.
A full adder can be implemented with two XOR gates, two AND gates, and
one OR gate.

AND

A

B

1,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0

1,1,0,0,0,0,1,0

b: 4/8

C

a: 6/8
c: 3/8

Figure 4: Multiplication on stochastic bit streams with an AND gate. Here
the inputs are 6/8 and 4/8. The output is 6/8× 4/8 = 3/8, as expected.

and so complex with a conventional positional representation? Al-
though compact, a positional representation imposes a computa-
tional burden for arithmetic: for each operation we must, in essence,
“decode” the operands, weighting the higher order bits more and
the lower order bits less; then we must “re-encode” the result in
weighted form. Since the stochastic representation is uniform, no
decoding and no re-encoding are required to operate on the values.

B

A

MUX

1

0

C

S

a: 1/8

0,1,0,0,0,0,0,0

1,0,1,1,0,1,1,0

0,0,1,0,0,0,0,1

1,0,0,1,0,1,1,0

c: 4/8

b: 5/8

s: 2/8

Figure 5: Scaled addition on stochastic bit streams, with a multiplexer
(MUX). Here the inputs are 1/8, 5/8, and 2/8. The output is 2/8×1/8+
(1− 2/8)× 5/8 = 4/8, as expected.

We can perform operations other than multiplication with the
stochastic representation. Consider addition. It is not feasible to
add two probability values directly; this could result in a value
greater than one, which cannot be represented as a probability value.
However, we can perform scaled addition. Figure 5 shows a scaled
adder operating on real numbers in the stochastic representation.
It consists of a multiplexer (MUX), a digital construct that selects
one of its two input values to be the output value, based on a third
“selecting” input value. For the multiplexer shown in Figure 5, S
is the selecting input. When S = 1, the output C = A. Otherwise,
when S = 0, the output C = B. The Boolean function imple-
mented by the multiplexer is C = (A∧ S)∨ (B ∧¬S).5 With the
assumption that the three input stochastic bit streams A, B, and S
are independent, the number represented by the output stochastic
bit stream C is

c = P (C = 1)

= P (S = 1 and A = 1) + P (S = 0 and B = 1)

= P (S = 1)P (A = 1) + P (S = 0)P (B = 1)

= s · a+ (1− s) · b.

(2)

Thus, with this stochastic representation, the computation performed
by a multiplexer is the scaled addition of the two input values a and
b, with a scaling factor of s for a and 1− s for b.

The task of analyzing combinational circuitry operating on stochas-
tic bit streams is well understood [2]. For instance, it can be shown
that, given an input x, an inverter (i.e., a NOT gate) implements
the operation 1− x. Given inputs x and y, an OR gate implements
the operation x+ y−xy. Analyzing the circuit in Figure 2, we see
that it implements the function x1x2 +x3−x1x2x3. Aspects such
5When discussing Boolean functions, we will use ∧, ∨, and ¬ to represent
logical AND, OR, and negation, respectively. We adopt this convention
since we use + and · to represent arithmetic addition and multiplication,
respectively.



as signal correlations of reconvergent paths must be taken into ac-
count. Algorithmic details for such analysis were first fleshed out
by the testing community [3]. They have also found mainstream
application for tasks such as timing and power analysis [4, 5].

In this paper, we will explore the more challenging task of syn-
thesizing logical computation on stochastic bit streams that imple-
ments the functionality that we want. Naturally, since we are map-
ping probabilities to probabilities, we can only implement func-
tions that map the unit interval [0, 1] onto the unit interval [0, 1].
Based on the constructs for multiplication and scaled addition shown
in Figures 4 and 5, we can readily implement polynomial functions
of a specific form, namely polynomials with non-negative coeffi-
cients that sum up to a value no more than one:

g(t) =

n∑
i=0

ait
i

where, for all i = 0, . . . , n, ai ≥ 0 and
∑n
i=0 ai ≤ 1.

For example, suppose that we want to implement the polynomial
g(t) = 0.3t2+0.3t+0.2 through logical computation on stochastic
bit streams. We first decompose it in terms of multiplications of the
form a · b and scaled additions of the form sa+ (1− s)b, where s
is a constant:

g(t) = 0.8(0.75(0.5t2 + 0.5t) + 0.25 · 1).

Then, we reconstruct it with the following sequence of multiplica-
tions and scaled additions:

w1 = t · t,
w2 = 0.5w1 + (1− 0.5)t,

w3 = 0.75w2 + (1− 0.75) · 1,
w4 = 0.8 · w3.

The circuit implementing this sequence of operations is shown in
Figure 6. In the figure, the inputs are labeled with the probabilities
of the bits of the corresponding stochastic streams. Some of the
inputs have fixed probabilities and the others have variable proba-
bilities t. Note that the different lines with the input t are each fed
with independent stochastic streams with bits that have probabil-
ity t.

AND MUX

1

0 MUX

1

0

AND

t

t

t

0.5
1

0.75

0.8
g(t)

Figure 6: Computation on stochastic bit streams implementing the poly-
nomial g(t) = 0.3t2 + 0.3t+ 0.2.

What if the target function is a polynomial that is not decompos-
able this way? Suppose that it maps the unit interval onto the unit
interval but it has some coefficients less than zero or some greater
than one. For instance, consider the polynomial g(t) = 3

4
−t+ 3

4
t2.

It is not apparent how to construct a network of stochastic multipli-
ers and adders to implement it.

In this paper, we propose a general method for synthesizing arbi-
trary univariate polynomial functions on stochastic bit streams. A
necessary condition is that the target polynomial maps the unit in-
terval onto the unit interval. Our major contribution is to show that
this condition is also sufficient: we provide a constructive method
for implementing any polynomial that satisfies this condition. Our
method is based on some novel mathematics for manipulating poly-
nomials in a special form called a Bernstein polynomial. In [6] we
showed how to convert a general power-form polynomial into a
Bernstein polynomial with coefficients in the unit interval. In [7]

we showed how to realize such a polynomial with a form of “gen-
eralized multiplexing.”

We illustrate the basic steps of our synthesis method with the
example of g(t) = 3

4
− t+ 3

4
t2. (We define Bernstein polynomials

in Section 2. We provide further details regarding the synthesis
method in Section 3.)

1. Convert the polynomial into a Bernstein polynomial with all
coefficients in the unit interval:

g(t) =
3

4
· [(1− t)2] +

1

4
· [2t(1− t)] +

1

2
· [t2].

Note that the coefficients of the Bernstein polynomial are
3
4
, 1

4
and 1

2
, all of which are in the unit interval.

2. Implement the Bernstein polynomial with a multiplexing cir-
cuit, as shown in Figure 7. The block labeled “+” counts the
number of ones among its two inputs; this is either 0, 1, or
2. The multiplexer selects one of its three inputs as its output
according to this value. Note that the inputs with probability
t are each fed with independent stochastic streams with bits
that have probability t.

t

MUX

3/4

g(t)

0

1

2

t

1/4

1/2

Figure 7: A generalized multiplexing circuit implementing the polynomial
g(t) = 3

4
− t+ 3

4
t2.

1.1 Input/Output Interface
The premise for the synthesis method in this paper is that the

inputs and outputs to combinational circuitry consist of stochastic
bit streams (or, equivalently, of stochastic bits on parallel wire bun-
dles). Either the inputs are presented in this form or else they must
be encoded this way, say from binary radix. Either the outputs are
usable in this form or they must be decoded, say back into binary
radix. This input/output encoding and decoding is not the focus
of this paper; rather, our contributions are at a conceptual level in
terms of the logic design and the mathematics. Here we briefly
comment the input/output interfacing.

For a variety of circuit applications, for instance in sensors and
embedded systems, the inputs are obtained from physical measure-
ments in analog form, so as real-valued numbers. In the analog
to digital (A/D) conversion process, these real-valued numbers are
converted to binary radix. However, many A/D converters, such
as sigma-delta converters, naturally produce pulse streams of ones
and zeros as an intermediate form [8]. Such converters could easily
be adapted to produce stochastic bit streams, exploiting white noise
for the encoding. Similarly, at the outputs, digital to analog (D/A)
conversion could produce analog values directly from stochastic bit
streams.

For applications that can exploit physical sources of randomness
to generate bit streams, but can only generate fixed probabilities, we
have developed a methodology for transforming the probabilities
of bit streams through combinational logic [9, 10]. In particular,
given unbiased bit streams – so streams with probability 0.5 – we
can generate stochastic bit streams with arbitrary binary fractional
probabilities.

In prior work [11], we validated our synthesis methodology us-
ing digital constructs to generate pseudorandom bit streams at the
inputs and to transform these streams back to numerical values at



the outputs; specifically, we used linear feedback shift registers
(LFSRs) and counters for these tasks. In a sense, we are handi-
capping ourselves by using such digital constructs, since the cost
of converting to and from pseudo-randomness dominates our de-
signs. Still, as we show, our designs compete with conventional
designs very favorably in terms of cost. They perform much better
in terms of error tolerance.

1.2 Related Work
A sequence of early papers established the concept of logical

computation on stochastic bit streams [12, 13]. These papers dis-
cussed basic operations such as multiplication and addition. Later
papers delved into more complex operations, including exponential
functions and square roots [14, 15]. In [16], the authors discuss the
implementation of basic arithmetic operations as well as complex
ones, including hyperbolic functions, with stochastic bit streams.
They also discuss different forms of stochastic representation, in-
cluding a “bipolar” representation for negative values. Much of the
interest in computing with stochastic bit streams stems from the
field of neural networks, where the concept is known as “pulsed”
or “pulse-coded” computation [17, 18].

In fact, the general concept of stochastic computing dates back
even earlier, to work by J. von Neumann in the 1950’s [19]. He
applied probabilistic logic to the study of thresholding and multi-
plexing operations on bundles of wires with stochastic signals. As
he eloquently states in the introduction to his seminal paper, “Error
is viewed not as an extraneous and misdirected or misdirecting ac-
cident, but as an essential part of the [design].” We find this view,
that randomness and noise are integral to computation, to be com-
pelling in the modern era of nanoscale electronics.

We point to two recent research efforts that embrace random-
ness in circuit and system design. In [20], the authors propose a
construct that they call probabilistic CMOS (PCMOS) that gen-
erates random bits from intrinsic sources of noise. In [21], PC-
MOS switches are applied to form a probabilistic system-on-a-chip
(PSOC); this system provides intrinsic randomness to the applica-
tion layer, so that it can be exploited by probabilistic algorithms.
In [22] and [23], the authors propose a methodology for design-
ing stochastic processors, that is to say, processors that can tolerate
computational errors caused by hardware uncertainties. They strive
for a favorable trade-off between reliability and power consump-
tion.

1.3 Paper Organization
In Section 2, we provide some mathematical preliminaries on

Bernstein polynomials. In Section 3, we present our general method
for synthesizing arbitrary univariate polynomial functions on stochas-
tic bit streams. In Section 4, we generalize the method to arbitrary
non-polynomial functions through polynomial approximations. In
Section 5, we present experimental results on hardware cost, per-
formance and error tolerance for stochastic implementations of poly-
nomials and non-polynomial functions. In Section 6, we conclude
with some thoughts on the potential impact and future directions of
this work.

2. BERNSTEIN POLYNOMIALS
In this section, we discuss some of the mathematical properties

of a specific type of polynomial that we use, namely Bernstein
polynomials [24].

Definition 1
The family of n+ 1 polynomials of the form

Bi,n(t) =

(
n

i

)
ti(1− t)n−i, i = 0, . . . , n

are called Bernstein basis polynomials of degree n.6 �

Definition 2
A linear combination of Bernstein basis polynomials of degree n

Bn(t) =

n∑
i=0

bi,nBi,n(t) (3)

is a Bernstein polynomial of degree n. The bi,n’s are called Bern-
stein coefficients. �

Polynomials are usually represented in power form. We can con-
vert a power-form polynomial of degree n, g(t) =

∑n
i=0 ai,nt

i,
into a Bernstein polynomial of degree n as g(t) =

∑n
i=0 bi,nBi,n(t).

The conversion from the power-form coefficients ai,n to the Bern-
stein coefficients bi,n is a closed-form expression:

bi,n =

i∑
j=0

(
i
j

)(
n
j

)aj,n, 0 ≤ i ≤ n. (4)

The reader is referred to [25] for a proof of this.

Example 1
The polynomial g1(t) =

1

4
+

9

8
t− 15

8
t2 +

5

4
t3 can be converted

into a Bernstein polynomial of degree 3:

g1(t) =
2

8
B0,3(t) +

5

8
B1,3(t) +

3

8
B2,3(t) +

6

8
B3,3(t). �

Generally, a power-form polynomial of degree n can be con-
verted into an equivalent Bernstein polynomial of degree greater
than or equal to n. The coefficients of a Bernstein polynomial of
degree m + 1 (m ≥ n) can be derived from the Bernstein coeffi-
cients of an equivalent Bernstein polynomial of degreem. We refer
to this as degree elevation.

bi,m+1 =


b0,m i = 0

(1− i

m+ 1
)bi,m +

i

m+ 1
bi−1,m 1 ≤ i ≤ m

bm,m i = m+ 1.
(5)

Again, the reader is referred to [25] for a proof of this.

3. SYNTHESIZING POLYNOMIAL
ARITHMETIC

As we show in [7], computation on stochastic bit streams gen-
erally implements a multivariate polynomial F (x1, . . . , xn) with
integer coefficients. The degree of each variable is at most one,
i.e., there are no terms with variables raised to the power of two,
three or higher. If we associate some of the xi’s of the polynomial
F (x1, . . . , xn) with real constants in the unit interval and the oth-
ers with a common variable t, then the function F becomes a real-
coefficient univariate polynomial g(t). With different choices of
the original Boolean function f and different settings of the proba-
bilities of the xi’s, we get different polynomials g(t).

Example 2
Consider the function implemented by a multiplexer operating on
stochastic bit streams, Equation (2). It is a multivariate polynomial,
g(a, b, s) = b+ sa− sb. The polynomial has integer coefficients.
The degree of each variable is at most one. If we set s = a = t
and b = 0.8 in the polynomial, then we get a univariate polynomial
g(t) = 0.8− 0.8t+ t2. �

The first question that arises is: what kind of univariate polyno-
mials can be implemented by computation on stochastic bit streams?
6Here

(n
k

)
denotes the binomial coefficient “n choose k.”



In [6], we prove the following theorem stating a necessary condi-
tion on the polynomials. The theorem essentially says that, given
inputs that are probability values – that is to say, real values in the
unit interval – the polynomial must also evaluate to a probability
value. There is a caveat here: if the polynomial is not identically
equal to 0 or 1, then it must evaluate to a value in the open interval
(0, 1) when the input is also in the open interval (0, 1).

Theorem 1
If a polynomial g(t) can be implemented by logical computation
on stochastic bit streams, then

1. g(t) is identically equal to 0 or 1 (g(t) ≡ 0 or 1), or

2. g(t) maps the open interval (0, 1) to itself (g(t) ∈ (0, 1), for
all t ∈ (0, 1)) and 0 ≤ g(0), g(1) ≤ 1. �

For instance, as shown in Example 2, the polynomial g(t) = 0.8−
0.8t+ t2 can be implemented by logical computation on stochastic
bit streams. It is not hard to see that g(t) satisfies the necessary
condition. In fact, g(0) = 0.8, g(1) = 1 and 0 < g(t) < 1, for all
0 < t < 1.

The next question that arises is: can any polynomial satisfying
the necessary condition be implemented by logical computation on
stochastic bit streams? If so, how? We propose a synthesis method
that solves this problem; constructively, we show that, provided that
a polynomial satisfies the necessary condition, we can implement it.
First, in Section 3.1, we show how to implement a Bernstein poly-
nomial with coefficients in the unit interval. Then, in Section 3.2,
we describe how to convert a general power-form representation
into such a polynomial.

3.1 Synthesizing Bernstein Polynomials with
Coefficients in the Unit Interval

If all the coefficients of a Bernstein polynomial are in the unit
interval, i.e., 0 ≤ bi,n ≤ 1, for all 0 ≤ i ≤ n, then we can
implement it with the construct shown in Figure 8.

+

X1
X2

Xn

MUX

Z0

Z1

Zn

Y

Ʃi Xi

...

P(Xi = 1) = t

P(Zi = 1) = bi,n

...

0

1

n

Figure 8: Combinational logic that implements a Bernstein polynomial
Bn(t) =

∑n
i=0 bi,nBi,n(t) with all coefficients in the unit interval.

The block labeled “+” in Figure 8 has n inputs X1, . . . , Xn and
dlog2(n+1)e outputs. It consists of combinational logic that com-
putes the weight of the inputs, that is to say, it counts the number
of ones in the n Boolean inputs X1, . . . , Xn, producing a binary
radix encoding of this count. We will call this an n-bit Boolean
“weight counter.” The multiplexer (MUX) shown in the figure has
“data” inputs Z0, . . . , Zn and the dlog2(n + 1)e outputs of the
weight counter as the selecting inputs. If the binary radix encoding
of the outputs of the weight counter is k (0 ≤ k ≤ n), then the
output Y of the multiplexer is set to Zk.

Figure 9 gives a simple design for an 8-bit Boolean weight counter
based on a tree of adders. An n-bit Boolean weight counter can be
implemented in a similar way.

In order to implement the Bernstein polynomial

Bn(t) =

n∑
i=0

bi,nBi,n(t),

1-bit

adder
2-bit

adder

1-bit

adder

1-bit

adder

1-bit

adder
3-bit

adder

2-bit

adder

X1

X8

X7

X6

X5

X4

X3

2

2

2

2

3

3

S3...S0
4

X2

Figure 9: The implementation of an 8-bit Boolean weight counter.

we set the inputsX1, . . . , Xn to be independent stochastic bit streams
with probability t. Equivalently, X1, . . . , Xn can be viewed as in-
dependent random Boolean variables that have the same probability
t of being one. The probability that the count of ones among the
Xi’s is k (0 ≤ k ≤ n) is given by the binomial distribution:

P

(
n∑
i=1

Xi = k

)
=

(
n

k

)
tk(1− t)n−k = Bk,n(t). (6)

We set the inputs Z0, . . . , Zn to be independent stochastic bit
streams with probability equal to the Bernstein coefficients
b0,n, . . . , bn,n, respectively. Notice that we can represent bi,n with
stochastic bit streams because we assume that 0 ≤ bi,n ≤ 1.
Equivalently, we can view Z0, . . . , Zn as n + 1 independent ran-
dom Boolean variables that are one with probabilities b0,n, . . . , bn,n,
respectively.

The probability that the output Y is one is

y = P (Y = 1)

=

n∑
k=0

(
P

(
Y = 1|

n∑
i=1

Xi = k

)
P

(
n∑
i=1

Xi = k

))
.

(7)

Since the multiplexer sets Y equal to Zk, when
∑n
i=1Xi = k, we

have

P

(
Y = 1|

n∑
i=1

Xi = k

)
= P (Zk = 1) = bk,n. (8)

Thus, from Equations (3), (6), (7), and (8), we have

y =

n∑
k=0

bk,nBk,n(t) = Bn(t). (9)

We conclude that the circuit in Figure 8 implements the given Bern-
stein polynomial with all coefficients in the unit interval. We have
the following theorem.

Theorem 2
If all the coefficients of a Bernstein polynomial are in the unit in-
terval, i.e., 0 ≤ bi,n ≤ 1, for 0 ≤ i ≤ n, then we can synthesize
logical computation on stochastic bit streams to implement it. �

Example 3
Figure 10 shows a circuit that implements the Bernstein polynomial

g1(t) =
2

8
B0,3(t) +

5

8
B1,3(t) +

3

8
B2,3(t) +

6

8
B3,3(t),

converted from the power-form polynomial g1(t) in Example 1.
The function is evaluated at t = 0.5. The stochastic bit streams
X1, X2 and X3 are independent, each with probability t = 0.5.
The stochastic bit streams Z0, . . . , Z3 have probabilities 2

8
, 5

8
, 3

8
,

and 6
8

, respectively. As expected, the computation produces the
correct output value: g1(0.5) = 0.5. �



0,0,0,1,1,0,1,1 (4/8)

0,1,1,1,0,0,1,0 (4/8)

1,1,0,1,1,0,0,0 (4/8)

0,0,0,1,0,1,0,0 (2/8)

X1

X2

X3

1,2,1,3,2,0,2,1

0,1,0,1,0,1,1,1 (5/8)

0,1,1,0,1,0,0,0 (3/8)

1,1,1,0,1,1,0,1 (6/8)

MUX 0,1,0,0,1,1,0,1 (4/8)

Z0

Z1

Z2

Z3

Y

0

1

2

3

Figure 10: Computation on stochastic bit streams that implements the
Bernstein polynomial g1(t) = 2

8
B0,3(t) + 5

8
B1,3(t) + 3

8
B2,3(t) +

6
8
B3,3(t) at t = 0.5.

3.2 Synthesis of Power-Form Polynomials
In the previous section, we saw that we can implement a poly-

nomial through logical computation on stochastic bit streams if the
polynomial can be represented as a Bernstein polynomial with co-
efficients in the unit interval. A question that arises is: what kind of
polynomials can be represented in this form? Generally, we seek
to implement polynomials given to us in power form. In [6], we
proved that any polynomial that satisfies Theorem 1 – so essentially
any polynomial that maps the unit interval onto the unit interval –
can be converted into a Bernstein polynomial with all coefficients
in the unit interval.7 Based on this result and Theorem 2, we can see
that the necessary condition shown in Theorem 1 is also a sufficient
condition for a polynomial to be implemented by logical computa-
tion on stochastic bit streams.

Example 4
Consider the polynomial g2(t) = 3t−8t2 +6t3 of degree 3, Since
g2(t) ∈ (0, 1), for all t ∈ (0, 1) and g2(0) = 0, g2(1) = 1, it
satisfies the necessary condition shown in Theorem 1. Note that

g2(t) = B1,3(t)−
2

3
B2,3(t) +B3,3(t)

=
3

4
B1,4(t) +

1

6
B2,4(t)−

1

4
B3,4(t) +B4,4(t)

=
3

5
B1,5(t) +

2

5
B2,5(t) +B5,5(t).

Thus, the polynomial g2(t) can be converted into a Bernstein poly-
nomial with coefficients in the unit interval. The degree of such a
Bernstein polynomial is 5, greater than that of the original power
form polynomial. �

Given a power-form polynomial g(t) =
∑n
i=0 ai,nt

i that satis-
fies the condition of Theorem 1, we can synthesize it in the follow-
ing steps:

1. Let m = n. Obtain b0,m, b1,m, . . . , bm,m from
a0,n, a1,n, . . . , an,n by Equation (4).

2. Check to see if 0 ≤ bi,m ≤ 1, for all i = 0, 1, . . . ,m. If so,
go to step 4.

3. Let m = m+ 1. Calculate b0,m, b1,m, . . . , bm,m from
b0,m−1, b1,m−1, . . . , bm−1,m−1 based on Equation (5). Go
to step 2.

4. Synthesize the Bernstein polynomial

Bm(t) =

m∑
i=0

bi,mBi,m(t).

with the generalized multiplexing construct in Figure 8.
7The degree of the equivalent Bernstein polynomial with coefficients in the
unit interval may be greater than the degree of the original polynomial.

4. SYNTHESIZING NON-POLYNOMIAL
FUNCTIONS

In real applications, we often encounter non-polynomial func-
tions, such as trigonometric functions. In this section, we discuss
the implementation of such functions; further details are given in
[11]. Our strategy is to approximate them by Bernstein polynomi-
als with coefficients in the unit interval. In the previous section, we
saw how to implement such Bernstein polynomials.

We formulate the problem of implementing an arbitrary function
g(t) as follows. Given g(t), a continuous function on the unit inter-
val, and n, the degree of a Bernstein polynomial, find real numbers
bi,n, i = 0, . . . , n, that minimize∫ 1

0

(g(t)−
n∑
i=0

bi,nBi,n(t))2 dt, (10)

subject to

0 ≤ bi,n ≤ 1, for all i = 0, 1, . . . , n. (11)

Here we try to find the optimal approximation by minimizing
an objective function, Equation (10), that measures the approxi-
mation error. This is the square of the L2 norm on the difference
between the original function g(t) and the Bernstein polynomial
Bn(t) =

∑n
i=0 bi,nBi,n(t). The integral is on the unit interval

because t, representing a probability value, is always in the unit
interval. The constraints in Equation (11) guarantee that the Bern-
stein coefficients are all in the unit interval. With such coefficients,
the construct in Figure 8 computes an optimal approximation of the
function.

The optimization problem is a constrained quadratic program-
ming problem [11]. Its solution can be obtained using standard
techniques.

Example 5
Consider the non-polynomial function g3(t) = t0.45. We approxi-
mate this function by a Bernstein polynomial of degree 6. By solv-
ing the constrained quadratic optimization problem, we obtain the
Bernstein coefficients:

b0,6 = 0.0955, b1,6 = 0.7207, b2,6 = 0.3476, b3,6 = 0.9988,

b4,6 = 0.7017, b5,6 = 0.9695, b6,6 = 0.9939. �

5. EXPERIMENTS
We present experimental results analyzing the hardware cost,

performance, and error tolerance for implementations of polyno-
mial and non-polynomial functions. Specifically, we compare the
area-delay product of stochastic versus conventional implementa-
tions of arbitrary polynomials. Also, we compare the tolerance to
soft errors, i.e., bit flips, in the input data for both implementa-
tions of a common non-polynomial function in image processing,
namely gamma correction.

5.1 Hardware Comparison
Suppose that we want to compute a polynomial g(t) =

∑n
i=0 ai,nt

i

with a resolution 2−M . To achieve this resolution, a conventional
implementation based on binary radix requires M bits. A stochas-
tic implementation requires bit streams of length 2M .

For our conventional implementation, we first factorize the poly-
nomial as g(t) = a0,n+t(a1,n+t(a2,n+· · ·+t(an−1,n+tan,n))).
From this form, we implement it with a sequence of multiplications
and additions. Since it is of degree n, we evaluate the polynomial
with n iterations through a circuit consisting of a multiplier and
an adder. For the hardware, we use standard benchmark circuits.8

For M bits, the circuit consists of 10M2 − 4M − 9 logic gates.
8Specifically, we use circuit C6288 from the ISCAS’85 collection for the
multiplier [26]. It is typical of the genre, built with carry-save adders.



The critical path passes through 12M − 11 gates. We assume that
the cost of each logic gate is unit area and the time for each logic
gate to compute a value is unit delay. Accordingly, the area-delay
product for this conventional implementation of a polynomial of
degree n is

(10M2 − 4M − 9)(12M − 11)n,

where the factor n accounts for the n iterations.
For our stochastic implementation, we first convert a polynomial

from a power form into a Bernstein form. Then we build the circuit
structure shown in Figure 8 to compute the function. Table 1 shows
the area A(n) and delay D(n) of the circuits to compute Bernstein
polynomials of degree n = 3, 4, 5, and 6. The area-delay product
for a stochastic implementation of a polynomial of degree n is

A(n)D(n)2M ,

where the factor 2M accounts for the length of the bit streams.
(Note that if we were using parallel wire bundles instead of serial
bit streams, then we would need 2M copies instead of 2M cycles;
the area-delay product would be the same.)
Table 1: The area and delay of the circuits to compute Bernstein polyno-
mials of degree 3, 4, 5, and 6.

degree n of
Bernstein polynomial

area A(n) delay D(n)

3 22 10
4 40 17
5 49 20
6 58 20

Table 2: A comparison of the area-delay product for conventional and
stochastic implementations of polynomials with different degree n and res-
olution 2−M .

area-delay product stochastic product
n M

conventional stochastic conventional product

7 99207 28160 0.284
8 152745 56320 0.369

3 9 222615 112640 0.506
10 310977 225280 0.724
7 132276 87040 0.658
8 203660 174080 0.855

4 9 296820 348160 1.173
10 414636 696320 1.679
7 165345 125440 0.759
8 254575 250880 0.986

5 9 371025 501760 1.352
10 518295 1003520 1.936
7 198414 148480 0.748
8 305490 296960 0.972

6 9 445230 593920 1.334
10 621954 1187840 1.910

Table 2 shows the area-delay product for conventional and stochas-
tic implementations for polynomials of degrees n = 3, 4, 5, 6 and
resolutions 2−M ,M = 7, 8, 9, 10. The last column shows the ratio
of the two. We can see that for M ≤ 8, the area-delay product of
the stochastic implementation is always less than that of the con-
ventional implementation. Indeed, for small values of n and M , it
is much less.

5.2 Comparison of Error Tolerance for Gamma
Correction Function

In this section, we compare the error tolerance of our stochastic
implementation to that of conventional implementation of a non-
polynomial function commonly used in image processing: gamma
correction. The gamma correction function is a nonlinear operation
used to code and decode luminance and tri-stimulus values in video
and still-image systems. It is defined by a power-law expression

Vout = V γin ,

Input 

O
ut

pu
t

Figure 11: The average output errors of conventional and stochastic im-
plementations under different input error ratios.

where Vin is normalized between zero and one [27]. We apply a
value of γ = 0.45, which is the value used in most video cameras.

For a conventional implementation, we implement the gamma
correction function as it is most commonly done: based on direct
table lookup. For example, for a display system that supports 8 bits
of color depth per pixel, we use an 8-bit input / 8-bit output table
of its values.

For a stochastic implementation, we use the techniques shown in
Section 4 to approximate the function by a Bernstein polynomial.
With γ = 0.45, the gamma correction function is just the function
shown in Example 5. We choose the degree of the Bernstein poly-
nomial to be 6. For this value, the Bernstein coefficients are those
in that example. The precision of the computation is 2−10. Accord-
ingly, the length of the stochastic bit streams is fixed at 210 = 1024
bits.

We compare the tolerances of the two implementations to soft
errors in the input data. These are simulated by independently flip-
ping a given percentage of the input bits. For example, if the input
error ratio is 5%, this implies that 5% of the total number of in-
put bits are randomly chosen and flipped. The input image without
error is shown in the left column of Figure 12.

We measure the output error. Figure 11 plots the average per-
centage of output error in the images generated by the two imple-
mentations for five different input error ratios. For any given er-
ror rate larger than zero, the stochastic implementation generates
smaller output errors than the conventional implementation does.
The rate of the output errors grows more slowly as the input error
rate increases. This is as expected: with the stochastic implemen-
tation, all bits have equal weight; each bit flip does little damage.
With the conventional implementation, bit flips afflict each bit of
the binary radix representation with equal probability. If the most
significant bit gets flipped, the error that occurs is large.

The effect of bit flips is more clearly demonstrated in Figure 12,
which shows the images generated by the two implementations un-
der different input error ratios. When the input error ratio is 10%,
the image generated by the conventional method is full of noisy
pixels, while the image generated by the stochastic method is still
recognizable.

6. DISCUSSION
The computation that we are advocating in this paper has a pseudo

analog character, reminiscent of computations performed by phys-
ical systems such as electronics on continuously variable signals
such as voltage. In our case, the variable signal is the probability
of obtaining a one in a stochastic yet digital bit stream. Indeed,
our system is built from ordinary, cheap digital electronics such
as CMOS. Digital constructs in CMOS operate on physical signals
such as voltage, of course. However, they are designed with the
premise that these signals can always be unequivocally interpreted
as zero or as one.

This is certainly counterintuitive: why impose an analog view on
digital values? As we have outlined in this paper, it might often be
advantageous to do so, both from the standpoint of the hardware re-



Original
Input Image

Conventional Implementation

Stochastic Implementation

(a) (b) (c)

Figure 12: Error tolerance for the gamma correction function. The images
in the top row are generated by a conventional implementation. The images
in the bottom row are generated by our stochastic implementation. Input
error ratios are (a) 1%; (b) 2%; (c) 10%.

sources required as well as the error tolerance of the computation.
Many of the functions that we seek to implement for computational
systems such as signal processing are arithmetic functions, consist-
ing of operations like addition and multiplication. Complex func-
tions, such as exponentials and trigonometric functions, are gen-
erally computed through polynomial approximations, so through
multiplications and additions. As we have argued, these opera-
tions are very natural and efficient when performed on stochastic
bit streams.

We are the first to tackle the problem of synthesizing arbitrary
polynomial functions through logical computation on stochastic bit
streams. The synthesis results for our stochastic implementations
of a variety of functions are convincing. The area-delay product
is comparable to that of conventional implementations with adders
and multipliers. Since stochastic bit streams are uniform, with no
bit privileged above any other, the computation is highly error tol-
erant. As higher and higher rates of bit flips occur, the accuracy
degrades gracefully.

Indeed, computation on stochastic bit streams could offer tun-
able precision: as the length of the stochastic bit stream increases,
the precision of the value represented by it also increases. Thus,
without hardware redesign, we have the flexibility to tradeoff preci-
sion and computation time. In contrast, with a conventional binary-
radix implementation, when a higher precision is required, the un-
derlying hardware has to be redesigned. Note that we have been
evaluating our stochastic implementations under the conservative
assumption that the clock rate will be the same as that of a con-
ventional implementation. However, with much simpler hardware
– for instance a single AND gate performing a complex task like
multiplication – we could potentially implement computation with
much higher clock rates, particularly if it is pipelined.

In this paper, we have discussed combinational logic operating
on stochastic bit streams. Such combinational circuitry often forms
the bulk of the computation in datapaths. In future work, we will
attempt to generalize the paradigm to sequential logic, i.e., finite-
state machines, operating on stochastic bit streams.

7. ACKNOWLEDGMENTS
This work is supported by a grant from the Semiconductor Re-

search Corporation’s Focus Center Research Program on Functional
Engineered Nano-Architectonics and by a CAREER Award, #0845650,
from the National Science Foundation. The authors thank Xin Li
for his help with the experiments and Kia Bazargan, David Lilja,
and Ivo Rosenberg for discussions.

8. REFERENCES
[1] W. Qian, J. Backes, and M. D. Riedel, “The synthesis of stochastic circuits for

nanoscale computation,” International Journal of Nanotechnology and

Molecular Computation, vol. 1, no. 4, pp. 39–57, 2010.
[2] K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general

combinational networks,” IEEE Transactions on Computers, vol. 24, no. 6, pp.
668–670, 1975.

[3] J. Savir, G. Ditlow, and P. H. Bardell, “Random pattern testability,” IEEE
Transactions on Computers, vol. 33, pp. 79–90, 1984.

[4] J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic, “Fast statistical timing
analysis by probabilistic event propagation,” in Design Automation Conference,
2001, pp. 661–666.

[5] R. Marculescu, D. Marculescu, and M. Pedram, “Logic level power estimation
considering spatiotemporal correlations,” in International Conference on
Computer-Aided Design, 1994, pp. 294–299.

[6] W. Qian, M. D. Riedel, and I. Rosenberg, “Uniform approximation and
Bernstein polynomials with coefficients in the unit interval,” University of
Minnesota, Tech. Rep., 2010, submitted to European Journal of Combinatorics.
[Online]. Available: http://cctbio.ece.umn.edu/wiki/index.php/Research

[7] W. Qian and M. D. Riedel, “The synthesis of robust polynomial arithmetic with
stochastic logic,” in Design Automation Conference, 2008, pp. 648–653.

[8] B. Dufort and G. W. Roberts, Analog Test Signal Generation Using Periodic
Σ∆-Encoded Data Streams. Kluwer Academic, 2000.

[9] W. Qian, M. D. Riedel, K. Barzagan, and D. Lilja, “The synthesis of
combinational logic to generate probabilities,” in International Conference on
Computer-Aided Design, 2009, pp. 367–374.

[10] W. Qian and M. D. Riedel, “Two-level logic synthesis for probabilistic
computation,” in International Workshop on Logic and Synthesis, 2010, pp.
95–102.

[11] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An architecture for
fault-tolerant computation with stochastic logic,” IEEE Transactions on
Computers (to appear), 2010.

[12] S. T. Ribeiro, “Random-pulse machines,” IEEE Transactions on Electronic
Computers, vol. 16, no. 3, pp. 261–276, 1967.

[13] B. Gaines, “Stochastic computing systems,” in Advances in Information
Systems Science. Plenum, 1969, vol. 2, ch. 2, pp. 37–172.

[14] C. Janer, J. Quero, J. Ortega, and L. Franquelo, “Fully parallel stochastic
computation architecture,” IEEE Transactions on Signal Processing, vol. 44,
no. 8, pp. 2110–2117, 1996.

[15] S. Toral, J. Quero, and L. Franquelo, “Stochastic pulse coded arithmetic,” in
International Symposium on Circuits and Systems, vol. 1, 2000, pp. 599–602.

[16] B. Brown and H. Card, “Stochastic neural computation I: Computational
elements,” IEEE Transactions on Computers, vol. 50, no. 9, pp. 891–905, 2001.

[17] C. Bishop, Neural Networks for Patten Recognition. Clarendon Press, 1995.
[18] S. Deiss, R. Douglas, and A. Whatley, “A pulse coded communications

infrastructure for neuromorphic systems,” in Pulsed Neural Networks. MIT
Press, 1999, ch. 6.

[19] J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms
from unreliable components,” in Automata Studies. Princeton University
Press, 1956, pp. 43–98.

[20] S. Cheemalavagu, P. Korkmaz, K. Palem, B. Akgul, and L. Chakrapani, “A
probabilistic CMOS switch and its realization by exploiting noise,” in IFIP
International Conference on VLSI, 2005, pp. 535–541.

[21] L. Chakrapani, P. Korkmaz, B. Akgul, and K. Palem, “Probabilistic
system-on-a-chip architecture,” ACM Transactions on Design Automation of
Electronic Systems, vol. 12, no. 3, pp. 1–28, 2007.

[22] S. Narayanan, J. Sartori, R. Kumar, and D. Jones, “Scalable stochastic
processors,” in Design, Automation and Test in Europe, 2010, pp. 335–338.

[23] P. S. Duggirala, S. Mitra, R. Kumar, and D. Glazeski, “On the theory of
stochastic processors,” in International Conference on Quantitative Evaluation
of Systems, 2010.

[24] G. Lorentz, Bernstein Polynomials. University of Toronto Press, 1953.
[25] R. Farouki and V. Rajan, “On the numerical condition of polynomials in

Bernstein form,” Computer Aided Geometric Design, vol. 4, no. 3, pp. 191–216,
1987.

[26] “ISCAS-85 C6288 16x16 multiplier.” [Online]. Available:
http://www.eecs.umich.edu/ jhayes/iscas/c6288.html

[27] D. Lee, R. Cheung, and J. Villasenor, “A flexible architecture for precise
gamma correction,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 4, pp. 474–478, 2007.


