
CONCENTRATION-BASED POLYNOMIAL CALCULATIONS ON NICKED DNA

Tonglin Chen, Marc Riedel

University of Minnesota, Twin-Cities
Department of Electrical and Computer Engineering

chen5202@umn.edu, mriedel@umn.edu

ABSTRACT
In this paper, we introduce a novel scheme for computing
polynomial functions on a substrate of nicked DNA. We first
discuss a fractional encoding of data, based on the concen-
tration of nicked double DNA strands. Then we show how
to perform multiplication on this representation. Next we
describe the read-out process, effected by releasing single
strands. We show how to perform simple mathematical op-
erations such as addition and subtraction, as well as how to
scale constant values using probabilistic switches. We also
describe two complex operations: calculating a vector dot
product and computing a general polynomial function. We
conclude by discussing potential applications of our scheme,
practical challenges, and future research directions.

Index Terms— DNA Computing, Stochastic Computing,
DNA Strand Displacement,

1. INTRODUCTION

This paper demonstrates novel schemes for implementing op-
erations such as multiplication, dot product, and polynomial
functions on data stored in DNA. Computation is effected via
the mechanism of of toehold-mediated DNA strand displace-
ment [1], [2]. Recent research has shown how data can be
encoded via nicks on DNA using gene-editing enzymes like
CRISPR-Cas9 and PfAgo [3]. Probabilistic switching of con-
centration values has been demonstrated by the DNA com-
puting community [4]. In previous work, we demonstrated
how a concept from computer engineering called stochastic
logic can be adapted to DNA computing [5]. In this paper, we
bring these disparate threads together: we demonstrate how to
perform stochastic computation on fractionally-encoded data
stored on nicked DNA.

2. ENCODING VALUES

The conventional approach to storing data in DNA is to use
a single species of strand to represent a value. It is either

This work was funded by DARPA Grant #W911NF-18-2-0032. We
thank David Soloveichik, Olgica Milenkovic and Boya Wang for helpful dis-
cussions.

encoded as a binary value, where the presence of the specific
strand represents a 1 and its absence a 0 [6]; or as a non-
integer value, encoded according to its concentration, called a
direct representation [7]. In recent research, we have shown
how a fractional representation can be used [5]. The idea is
to use the concentration of two species of strand X0, X1 to
represent a value x with

x =
X1

X0 +X1

where x ∈ [0, 1]. This encoding is related to the concept of
stochastic logic in which computation is performed on ran-
domized bit streams, with values represented by the fraction
of 1’s versus 0’s in the stream [8], [9], [10].

In this work, we store values according to nicking sites
on double DNA strands. For a given site, we will have some
strands nicked there, others not. Let the overall concentra-
tion of the double strand equal C0, and the concentration of
strands nicked at the site equal C1. The ratio of the concen-
tration of strands nicked versus the overall concentration is

x =
C1

C0

So this ratio is the relative concentration of the nicked strand
at this site. We use it to represent a variable x ∈ [0, 1].

Setting this ratio can be achieved by two possible meth-
ods. One is that we nick a site using a gene-editing guide that
is not fully complementary to the nicking site. The degree of
complementarity would control the rate of nicking and so set
the relative concentration of strands that are nicked. A sim-
pler method is to split the initial solution containing the strand
into two samples; nick all the strands in one sample; and then
mix together the two samples with the desired ratio x.

3. MULTIPLICATION

The core component of our design is the multiplication oper-
ation. It requires that the presence of nicks at a given sites be
statistically independent to the presence of nicks at other sites
on the same strand.

BA

00

10

01

11

Truth	Table	For	
Nick	Presence

Relative
Concentration

(1 − �)�

�(1 − �)

��

(1 − �)(1 − �)

BA

Nicking	Sites

Fig. 1. Multiplying two values, a and b. The result is the
relative concentration of the red strand.

3.1. Multiplying two values

Multiplying two fractionally encoded values requires two
neighboring nicking sites. Suppose we have two such sites
A and B on a double strand. For each site, there are two
possibilities: nicked or not nicked. Let a and b be the rel-
ative concentrations of strands nicked at sites A and B,
respectively. We assume the nicking is done independently.
Figure 1 shows four different possible scenarios on a given
strand. The truth table on the left shows whether a specific
location is nicked or not, and the concentration on the right
shows the relative concentration for each scenario. Here we
use the single strand between A and B in the last scenario,
shown in red, to represent the result of the multiplication.
The concentration of this strand specifies the result since it
only appears when both sites A and B are nicked. According
to our assumption, the presence of nicks at A and B are sta-
tistically independent. So the probability that both sites are
nicked is a × b. In Section 4, we discuss how to release the
single strand between the two sites. Its relative concentration
translates to the value of the multiplication operation, a× b.

3.2. Multiplying three or more values

We can extend this scheme to multiply three or more val-
ues at once. We again use the concentration of one species
of single-stranded DNA to represent the result. Suppose we
have a vector of fractional values x1, x2, ..., xn. We operate
on N neighboring nicking positions A1, A2, ..., An, ordered
sequentially, on a double-stranded DNA complex. To com-
pute the product, positions A1 and An should be nicked with
probability xi and positions A2 to An−1 should be nicked
with probability 1 − xi (so not nicked with probability xi).
Therefore the probability that the strand is nicked at sites A1

and An but not in between will be
∏n

i=1 xi. Again, we as-
sume that the nicking at each site is statistically independent.
Below, we discuss how to release the single strand between
the two end sites. Its relative concentration translates to the
value of the multiplication operation,

∏n
i=1 xi.

Heat

Displace

Fig. 2. Using a probe strand to read out the result. When a
complementary single strand of DNA, called a probe, shown
as the top black strand, is added, it displaces and releases the
single strands from regions in between nicks.

4. READING OUT

To process the result of multiplication, we need to detach sin-
gle strands from the base double strand. The diagram shown
in Figure 2 illustrates this process. When a complementary
single strand called a probe is supplied, it will displace and re-
lease single strands located between nicks, provided that the
distance between nicks is small [11]. In Section 6, we dis-
cuss how these single strands can then participate in further
strand-displacement operations.

5. APPLICATION: DOT PRODUCT

Suppose we have two vectors of fractional values: x1, x2, x3, x4

and y1, y2, y3, y4, where xi, yi ∈ [0, 1], and we want to calcu-
late the dot product of the two vectors,

∑4
i=1 xiyi. Figure 3

illustrates the process. First we encode the values on DNA
in the following order: x1, y1, x2, y2, x3, y3, x4, y4. Each
pair represents the calculation of one term xi ∗ yi using the
sequence of operations discussed in Section 3. The resulting
strands are A1, A2, A3, A4, respectively. Using probes, these
strands are released, separately but in parallel, for subsequent
reactions.

Next, using DNA strand displacement operations [1], [2],
we translate each of the released strands to a common single
strand, S:

Ai → S

(The details are omitted here due to space constraints.) The
accumulated concentration s will be the the sum of the con-
centrations of released strands. (As always, s as the sum is a

Concentration:		
																																						A1:	 																A2: 																					A3:	 																	A4:	 		�1�1 �2�2 �3�3 �4�4

Nick	Rate											 					 																 						 																				 							 																		 					�1 �1 �2 �2 �3 �3 �4 �4

Convert

Concentration																																																									S:	 ∑ ����

Readout

Fig. 3. Calculating a Dot Product

relative concentration. Therefore, it cannot exceed the max-
imum value, corresponding to s = 1, since the meaning is
undefined.) This is analogous to a “hard-wired” sum in com-
puter engineering.

 � 3

 1∗ �∗ 3∗

�0

�1

 1 � 3

React
 1 � 3

 1∗ �∗ 3∗

 � 3

 1 � 3

 1∗ �∗ 3∗

 1∗ �∗ 3∗

 1 � 3

 � 3 �0

 � 3 �1

�1

�0

Fig. 4. Probabilitic Switch. The concentration of the input X
is scaled by a factor a/(a + b) to S0 given input strands Y0

and Y1 with concentrations set to the ratio a : b.

6. SCALING

To further extend the current scheme, we use a scaling oper-
ation. This can be implemented with the probabilistic switch
scheme proposed by Cherry et al. [4]. It consists of a com-
petitive pair of strand displacement operations, X −→ S0 and
X −→ S1. These operate on double-stranded DNA complexes
Y0 and Y1 which are set with a ratio of concentrations a : b.
The pair of reactions will scale the input concentration of X
by a factor a/(a+ b) to produce the output strand S0, and by
a factor b/(a + b) to produce the output strand S1. This pro-
cess is illustrated in Figure 4. Again, due to space constraints,
further details are omitted.

To scale the concentration of a strand X by a constant
factor c ∈ [0, 1], we set the ratio of the the concentrations of
Y0 and Y1 to be c : (1 − c). The output strand is S0. (Strand
S1 is be considered waste in this scenario). We annotate this

operation as
X

c−→ S0

where c ∈ [0, 1] as the scaling constant.

7. APPLICATION: EVALUATING A POLYNOMIAL
FUNCTION

We present a scheme to to calculate polynomials of the form
of

∑
(−1)kCxi, where k ∈ {0, 1}, C, x ∈ [0, 1], using scal-

ing with the scheme discussed in Section 6. Figure 5 shows
an example. We evaluate

f(x) = 1− x+
1

2!
x2 − 1

3!
x3,

the first four term of the Taylor series expansion of f(x) = e−x.
First we encode the following fractional values on the

strand: 1, x, x, x, x, 1 − x, x. The first two terms generate
strand A with concentration x; the third and fourth terms gen-
erate strand B with concentration x2; and the last three terms
generate strand C with concentration x3.

After reading out strands A, B and C, we perform scaling
by the magnitude of the constant of the corresponding term,
using the operation discussed in Section 6. If the term is pos-
itive, we translate the concentration into a common strand P ;
else if it is negative, we translate its concentration into a com-
mon term N . The exact scaling factors for the target polyno-
mial above are:

A
100%−−−→ N

B
50%−−→ P

C
16.67%−−−−→ N

We also prepare strand P with relative concentration 100% to
represent the constant 1 in the function.

Nick	Rate									 							 															 											 																			 								 							1 � � � � 1 − � �

Readout

Concentration:													A:	 																							B:	 																																								C:	 		� �
2

�
3

Scaling	

To	N:	100% To	P:	50% To	N:	16.67%

Concentration																																													N:	 																																		P:	� +
1

6
�
3

1 +
1

2
�
2

React:	P+N->W

Result:	Leftover	concentration	of																N		or																					P	is	the	result
												Where	P	indicates	a	positive	value	and	N	indicates	a	negative	value

P(Prepared):	1

Fig. 5. Evaluation of a Polynomial Function: the Taylor series expansion of e−x.

In the final step, we effect the following transformation,
vi strand displacement:

P +N −→W

Here W represents a waste product. The purpose of the reac-
tion is to perform the “minus” operation. The result of eval-
uating the polynomial is the leftover of either strand P or N .
Which species survives represents the sign of the result; its
concentration represents the numeric part of the result.

8. DISCUSSION

In this paper, we proposed a novel scheme to perform mathe-
matical operations with DNA. We demonstrated simple oper-
ations such as multiplication, as well as reasonably complex
ones, such as evaluating polynomials functions. The read out
process and the scaling process are highly parallel, since each
term in the polynomial is encoded independently. We could
potentially scale this method to evaluate a polynomial with
a large number of terms efficiently, exploiting the inherent
parallelism of DNA computing. We note that we have only
validated these results through simulation. We are collaborat-
ing with the Soloveichik group at UT Austin to validate them
experimentally.

There are a number of practical challenges. One of the
concerns, ubiquitous with DNA strand displacement oper-
ations, is “leakage”, that is to say errors in transforming
concentrations. This occurs because we never have 100%

of DNA strands participating in designated reactions. Based
upon the actual experimental results, we might have to miti-
gate leakage with error correction methods or adopt so-called
“leakless” designs [12].

A future direction of research is investigating how to re-
encode the result of a a computation back into the relative
concentration of strands nicked at specific sites, so to end
with the same data encoding that we started with. This would
allow us to cascade computation, for instance using the re-
sult of a polynomial function as the input for another calcula-
tion directly. Cascading operations this way would allows us
to explore interesting parallel algorithms, such as multi-layer
convolutional neural networks.

9. REFERENCES

[1] Bernard Yurke, “A dna-fuelled molecular machine made
of dna,” Nature, vol. 406, no. 6796: 605, 2000.

[2] David Soloveichik, Georg Seelig, and Erik Winfree,
“Dna as a universal substrate for chemical kinetics,”
Proceedings of the National Academy of Sciences, vol.
107, no. 12, pp. 5393–5398, 2010.

[3] S Kasra Tabatabaei, Boya Wang, Nagendra Bala Murali
Athreya, Behnam Enghiad, Alvaro Gonzalo Hernandez,
Jean-Pierre Leburton, David Soloveichik, Huimin Zhao,
and Olgica Milenkovic, “Dna punch cards: Encoding
data on native dna sequences via nicking,” bioRxiv,
2019.

[4] Kevin M. Cherry and Lulu Qian, “Scaling up molecular
pattern recognition with dna-based winner-take-all neu-
ral networks,” Nature, vol. 559, no. 7714, pp. 370–376,
Jul 2018.

[5] Sayed Ahmad Salehi, Xingyi Liu, Marc D. Riedel, and
Keshab K. Parhi, “Computing mathematical functions
using dna via fractional coding,” Scientific Reports, vol.
8, no. 1, pp. 8312, May 2018.

[6] Georg Seelig, David Soloveichik, David Yu Zhang, and
Erik Winfree, “Enzyme-free nucleic acid logic circuits,”
Science, vol. 314, no. 5805, pp. 1585–1588, 2006.

[7] Daniel Wilhelm, Jehoshua Bruck, and Lulu Qian,
“Probabilistic switching circuits in dna,” Proceedings
of the National Academy of Sciences, vol. 115, no. 5,
pp. 903–908, Jan 2018.

[8] B. R. Gaines, Stochastic Computing Systems, pp. 37–
172, Springer US, Boston, MA, 1969.

[9] W. Qian and Marc Riedel, “The synthesis of robust
polynomial arithmetic with stochastic logic,” in Design
Automation Conference, 2008, pp. 648–653.

[10] W. Qian, X. Li, Marc Riedel, K. Bazargan, and D. J.
Lilja, “An architecture for fault-tolerant computation
with stochastic logic,” IEEE Transcations on Comput-
ers, , no. 1, pp. 93–105, 2011.

[11] Gary S. Hayward, “Unique double-stranded frag-
ments of bacteriophage t5 dna resulting from preferen-
tial shear-induced breakage at nicks,” Proceedings of
the National Academy of Sciences, vol. 71, no. 5, pp.
2108–2112, 1974.

[12] Boya Wang, Chris Thachuk, Andrew D. Ellington, Erik
Winfree, and David Soloveichik, “Effective design prin-
ciples for leakless strand displacement systems,” Pro-
ceedings of the National Academy of Sciences, vol. 115,
no. 52, pp. E12182–E12191, 2018.

