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ABSTRACT 

An investigation is made of relays whose reliability can be described in simple 
terms by means of probabilities. It is shown that by using a sufficiently large 
number of these relays in the proper manner, circuits can be built which are arbitrarily 
reliable, regardless of how unreliable the original relays are. Various properties of 
these circuits are elucidated. 

Part 12 

INTRODUCTION 

In an important paper-3 von Neumann considers the problem of con- 
structing reliable computing circuits by the redundant use of unreliable 
components. He studies several cases, one of which, for example, in- 
volves the construction of machines using as a basic component a 
“Sheffer stroke” organ.4 Von Neumann shows that under certain con- 
ditions it is possible to combine a number of unreliable Sheffer stroke 
organs to obtain an element which acts like a Sheffer stroke organ of 
higher reliability. In fact, under certain conditions one can approach 
perfect operation by means of a sufficiently redundant circuit. 

The present paper was inspired by von Neumann’s work and carries 
out a similar analysis for relay circuits. It appears that relays are 
basically more adaptable to these error-correcting circuits than the 
neuron-like components studied by von Neumann. At any rate, our 
results go further than his in several directions. 

In the first place, von Neumann needs to assume a certain fairly 
good reliability in his components in order to get started. With the 
Sheffer stroke organ, a probability of error less than 1/6 is absolutely 
necessary, and something like one in a hundred or better is required 
in the specific error-correcting circuits developed. The methods de- 
veloped here, on the other hand, wil1 apply to arbitrarily poor relays. 

Secondly, the amount of redundancy required in our circuits for a 
’ Murray Hill Laboratory, Bel1 Telephone Laboratories, Inc., Murray Hill, N. J. 
* Part 11 wil1 appear in this JOURNAL for October, 1956. 
8 J. VON NEUMANN, “Probabilistic Logies,” California Institute of Technology, 1952. 

(Also Published in “Automata Studies,” edited by C. E. Shannon and J. McCarthy, Princeton 
IJniversity Press, 1956.) 

4 The Sheffer stroke is the logica1 operation on two variables “nat A and not B.” It has 
the property that al1 logica1 functions can be generated in terms of it. 4 Sheffer stroke organ 
is a device with two binary inputs and one binary output which performs this logica1 operation. 
An unreliable component of this sort would give the proper output only with a certain prob- 
ability. 

r9r 
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given improvement in reliability is considerably different from that 
required by von Neumann. For example, in one numerical case that 
he considers, a redundancy of about 60,000 to 1 is required to obtain a 
certain improvement in operating reliability. The same improvement 
is obtained in relay circuits with a redundancy of only 100 to 1. We 
also show that in a certain sense some of our circuits are not far from 
minimal. Thus, in the numerical case just mentioned, our results show 
that a redundancy of at least 67 to 1 is necessary in any circuit of the 
type we consider. Hence, the actual circuits which achieve this im- 
provement with a redundancy of 100 to 1 are not too inefficient in the 
use of components. 

Another differente is that it is not necessary in the case of relays 
to use what von Neumann calls the “multiplexing system” in order to 
approach perfect operation on the final output. With his types of 
elements, the final output (without multiplexing) always has a definite 
residual unreliability. With the systems described here, this final proh- 
ability of error can approach zero. 

This paper is not intended for practica1 design purposes, but rather 
for theoretical and mathematica1 insight into the problem. There may, 
however, be some practica1 applications. The reliability of a com- 
mercial relay is typically very high, for example, one failure in 10; 
operations. However, there are cases where even this reliability is 
insufficient. In the first place, in large-scale computing machines an 
extremely large number of individual relay operations may be involved 
in one calculation, an error in any one of which could cause an error in 
the final result. Because of this, the Bel1 Telephone Laboratories’ 
computers have made extensive use of self-checking and error-detecting 
schemes. A second type of situation requiring extreme reliability 
occurs when human safety is dependent on correct operation of a relay- 
circuit, for example, railway interlocks, safety circuits on automatie 
elevators and in guided missiles, etc. It is possible that some of thc 
simpler circuits we describe may be of some use in applications such as 
these. However, the results of this paper wil1 not be directly applicable 
to actual relays which wear out with age, but only to idealized relays 
whose probability of failure are constant in time. 

IDEALIZED RELAYS 

We wil1 prove results only for idealized relays whose failures can be 
described in one specific manner by means of probabilities. Their 
description allows only intermittent types of failures, and allows these 
only under the assumption that the probability of failure remains 
constant as time passes. 

This idealization does not cover such actually possible cases as 
relays which wear out with age, relays whose windings burn out, or 
relays which have been wired into the circuit with an imperfect soldered 
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connection. It is also assumed that the circuit is not improperly de- 
signed or improperly wired and that there are no bits of solder to 
produce short circuits between different wires. 

Since al1 of the above kinds of errors and failures can actually occur 
in practice, using real relays, the results of this paper do not strictly 
apply to such real relays. However, the two kinds of failures con- 
sidered in this paper do actually occur in relays, so the kinds of circuits 
suggested are of some possible application. 

The first kind of failure allowed is the failure of a relay contact to 
close, which in actual relays is often due to a particle of dust preventing 
electrical closure. 

The second type of failure is the failure of a contact to open, which 
in actual relays is usually due to the welding action of the current 
passing through the contacts. We shall consider relay circuits in which 
the only causes of errors are of these two types-failure of contacts 
that should be closed to be actually closed and of contacts that should 
be open to be actually open. We wil1 assume, in fact, that there are 
two probabilities associated with a contact on a relay. If the relay is 

FIG. 1. Schematic represen- 
tation of the transition prob- 

FIG. 2. One proposed way of transforming relay circuits 

abilities. 
to improve reliability. 

energized, the contact is closed with probability a, open with prob- 
ability 1 - a. If the relay is not energized, the contact is closed with 
probability c and open with probability 1 - c. If a is greater than c, we 
wil1 cal1 the contact a make contact ; if a is less than c we cal1 it a break 
contact. We assume that different contacts are statistically indepen- 
dent. With actual relays this is probably not too far from the truth 
for contacts on diflerent relays and, indeed, this is al1 that is required 
for most of the results we wish to establish. In addition, we shall 
assume that on the successive times that a relay coil is energized its 
closures are statistically independent. 

A relay of this type governed by probabilities a and c wil1 be called 
a crummy6 relay. Its probability operation may be represented sche- 
matically as in Fig. 1. This wil1 be recognized as similar to diagrams 
used to represent a simple noisy communication Channel, and indeed 
such a relay can be thought of as a noisy binary Channel. The capacity 
of the corresponding Channel wil1 be zero if and only if a = c. We wil1 

6 “Crummy = crumby, esp. lousy,” Webster’s New International Dictionary. We chose 
the more modern spelling universally used in comic books. 
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see later that highly reliable computers can be constructed from a 
sufficient number of crummy relays if and only if u =j= c. 

THE GENERAL METHOD OF IMPROVING RELIABILITY 

In a genera1 way the analysis we wil1 give depends on constructing 
networks of contacts which act like a single contact but with greater 
reliability than the contacts of which they are composed. For example, 
in Fig. 2A, we have a crummy relay X with a make contact .L This 
relay might appear as a part of a large computing circuit. In Fig. 2B 
we replace this by four crummy relays X1, X?, Xij, X., whose coils in 
parallel replace the single coil X, and whose contacts are in the series 
parallel combination shown, this two-terminal circuit replacing the 
single previous x contact. If each of these four contacts bas the 
probability p of being closed, it is easily seen that the probability of 
the four-contact circuit being closed is 

h(p) = 1 - (1 - P’)” = LP? - p”_ 

This function is plotted in Fig. 3. It wil1 be seen that it lies above the 
diagonal line y = p for p greater than 0.618 and lies below the line for 

FIG. 3. The function describing FIG. 4. .%nother series-parallel circuit and its ;is- 
the behavior of Fig. 2B. sociated function. 

p less than 0.618. This means that if 0.618 is between the a and c of 
Fig. 1, Fig. 2B wil1 act like a relay with better values of a and c, that 
is, values nearer to zero and one. For example, if the individual relays 
made errors with probabilities 1 - a = c = 0.01, the circuit of Fig. 2B 
would make errors when the coils are energized with probability 0.000396, 
and when the coils are not energized with probability 0.0002. Thus 
a large improvement in reliability, both when the coil is energized and 
when it is not energized, is obtained by the use of this circuit. 

Figure 4 shows another contact arrangement giving rise to a some- 
what different function 

h(P) = [l - (1 - p)2]2 = 4p2 - 4p3 + pa. 
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Here again, h(p) is the probability of the network being closed, when 
the individual contacts each have probability fi of being closed. The 
network of Fig. 4 is the dual of that in Fig. 2, and the curve is that 
obtained by interchanging 0 and 1 in both abscissa and ordinate in 
Fig. 3. 

The bridge network of Fig. 5 gives rise to a symmetrical curve 
crossing the diagonal at p = O.S. For this network we have : 

h(p) = 2p2 + 2p3 - 5fi4 + 2~5. 

,411 of these networks tend to accentuate the nearness of p to its 
values 0 or 1 and thus tend to improve reliability. Many other net- 
works have similar properties as we shall see. Furthermore, we wil1 
show that it is possible to find a network whose curve, Fig. 6, crosses 
the diagonal line for a value of p between any two given numbers a 
and c (no matter how close together) and in fact is less than 6 at a 
and greater than 1 - 6 at c, for any positive 6. This means that an 
arbitrarily good relay can be made from a sufficient number of crummy 
relays. 

It may be seen that this genera1 procedure operates to improve the 
reliability of either make or break contacts. The only differente is 
the labeling of the points a and c. 

X, 
x3 

X2 G a x5 

1 

Liizl 
2p2+ 2p’ 

- sp4+2p* 

0 
0 2500 1 

, ‘a c 
FIG. 5. A bridge circuit and its associated function. FIG. 6. The genera1 form of 

curve of attainable functions. 

PROPERTIRS OF h(p) 

Consider any two-terminal network made up of contacts each of 
which has a probability p of being closed. The network wil1 have a 
probability, say h(p), of being closed. We wish to investigate some 
of the properties of h(p). 

In the first place, h(P) is a polynomial and may be written as follows : 

h(p) = c A,@(l - p),-n 
7&-0 (1) 
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where m is the total number of contacts in the network and A, is the 
number of ways we can select a subset of n contacts in the network 
such that if these n contacts are closed, and the remaining contacts 
open, then the network wil1 be closed. This is evident since (1) merely 
sums up the probabilities of the various disjoint ways that the network 
could be closed. 

The first non-vanishing term in (l), say A BP8( 1 - P)“-“, is related to 
the shortest paths through the network from one terminal to the other 
-~-s is the length of these paths and A, the number of them. This is 
because in (1) al1 the elements of a subset which contribute to A, must 
actually be on the path (otherwise A, would not have been the first 
non-vanishing term). We wil1 cal1 s the Zength of the network. It is 
evident from (1) that near P = 0 the function h(P) behaves as A PS. 

In a similar way, one can work with the probahility of the network 
being open and write 

1 - it(p) = 5 B,(l - P)np,-,, 
n-0 

12) 

where B, is the number of subsets of n contacts such that, if al1 contacts 
in a subset are open and the other contacts closed, the network is open. 
The first non-vanishing term in this series, say Bt( 1 - P) fP*-t, relates to 
the smallest cut sets of the network (sets of contacts which, if opened, 
open the network). Here t is the number of contacts in these minima1 
cut sets, and Bt the number of such cut sets. The reason is essentially 
as before. We wil1 cal1 t the width of the network. It is evident that, 
in the neighborhood of P = 1, h(p) behaves as 1 - Bt( 1 - P) I. 

The function h(P) may also be calculated by other means. For 
example, fix attention on a particular contact in the network, N. 
Calculate the probability function for the network obtained from N 
by replacing this contact with a short circuit, say f(P), and for the 
network obtained from N by replacing this contact with an open 
circuit, say g(P). Then clearly, 

h(P) = Pf(P) + (1 - P)g(P). 

Furthermore we wil1 have, whenever 0 5 P I 1, 

(3) 

f(P) 2 d#>- (4) 

This is intuitively evident since closing a connection certainly cannot 
decrease the probability of the network being closed. Formally, it 
follows from the relation (l), noting that the cases where the g net- 
work is closed are a subset of those in whichf is closed, and consequently 
the terms in the expression forf dominate those in the expression for g. 

If the network in question is planar, it wil1 have a dual. Let 
ho(P) be the probability function for this dual network. For each 
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state of the contacts of the original network let US make correspond 
in the dual network the state in which corresponding contacts have the 
opposite value. Then states for which the original network is open 
correspond to states for which the dual network is closed. If the prob- 
ability of closure of a contact in the dual network is 1 - P, where P is 
the probability of closure in the original network, then the probabilities 
of corresponding states are equal. Consequently we wil1 have 

1 - hD(1 -p) = h(p). (6) 

An example of this relation between the h functions for a network 
and its dual is given in Figs. 3 and 4. Either of these graphs can be 
obtained from the other by inverting, that is, by interchanging 0 and 1 
in both abscissa and ordinate. 

If the network is self-dual (for example the bridge of Fig. S), 

1 - h(1 - p) = h(p). (7) 

Substituting P = 1/2, we find h(1/2) = 1/2. 

COMBINATION OF TWO NETWOBKS 

Consider now two networks N1 and Nz with functions hl(P) and 
hz(P). If N1 and Nz are connected in series, Fig. 7, the resulting net- 

R(P) = f(P)qP) 
FIG. 7. Connection oftwo FIG. 8. Connection of two networks in 

networks in series. parallel. 

work wil1 be closed only if both parts are closed. Hence, the resulting 
h(P) function wil1 be given by the product hl(P) h*(p). 

If N1 and Nt are connected in parallel, Fig. 8, the resulting network 
wil1 be open only if both parts are open, an event with probability 
(1 - hJ(1 -hz). H ence, the resulting h(p) function for the parallel 
network wil1 be [l - (1 - hJ(1 - hz)]. 

A third method of combining the two networks N1 and NP is by 
“composition.” By this we mean replacing each element of N1 by a 
copy of Nz, as shown for a typical example by Fig. 9. It is evident 
that the composite network has an h function given by the composition 
of the two original h functions: 

h(P) = hl&(P)). (8) 
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If N1 and Nz are identical and this process is repeated n - 1 times, we 
obtain the nth composition of h with itself, which we denote by 

h(n)(p) = h(h(h. .h(@). . .)). 

The value of h(n)(p) can be found readily from the h(p) curve bl 
the staircase construction shown typically in Fig. 10 for hc3) (PI). Thus, 
by composition, a greater improvement in reliability may be obtained 
with networks whose h(p) curve crosses the diagonal but once. This 
effect, and the improvement by iteration relating to the staircase con- 
struction of Fig. 10, are very similar to situations in von Neumann’s 
approach. 

BOUNDS ON h’(p) 

We wil1 now deduce an interesting inequality concerning the slape 
of possible functions h(p). As a corollary, we wil1 show that any h(p) 
function can cross the diagonal at most ome. 

FIG. 9. Composition of two networks. FIG. 10. The effect of iterated 
composition. 

Theorem 1 

__ h’(P) 1 
(1 _ h(p)&(p) > (1 _ p)p whenever ’ < p < ‘, (9) 

provided h(p) is neither identically zero, identically one, nor identically 
equal to p. 

This wil1 be proved by an induction on the number of contacts in 
the network. We expand h(p) as in (3) except that we expand it 
about some contact which lies on a path through the network, and then 
we assume that either the inequality holds for the functions f and g, 
or that they are among the three exceptional functions, and then we 
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prove the inequality for the function h. But since the contact actually 
lies on a path, the proof of (4) gives that f(p) < g(p) for al1 p. Also 
we cannot have 1 -f(p) + g(p) = 0 for any p, for if so, we would 
have f(#) = 1 and g(p) = 0, which implies there is no path through 
the network of g, and no cut set through the network of f, and hence 
f(p) = 1 and g(p) = 0 for al1 p, hence h(p) = p, contradicting the 
hypotheses of the theorem. 

It can be seen that 

(1 - p>p(f - g)(l -f + g) > 0 whenever 0 < p < 1, (10) 

since each of the terms is positive. Multiplying out, 

Pf - Pg - Pf2 + 2Pfg - Pg2 - P”f + P2g + PY2 - 2P% + P2g2 > 0. 

Rearranging and factoring 

- Pf” + (1 - P)Pf - (1 - P)g’ - (1 - P)Pg > 
- Wf” + (1 - P)2g2 + (1 - P>2Pfd. 

Adding pf + (1 - p)g to each side, 

(1 -f)Pf + (1 - P)Pf + (1 - P)(l - g)g - (1 - P)Pg 
> pf + (1 - p)g - cpf + (1 - p)g]2 = h - h2 = (1 - lz)12. (11) 

Now, since by inductive assumption either f’ 
(1 - f )f ’ (1 _! P)P’ Or 

we have one of the three exceptional functions, we have in any case that 
(1 - f)f < (1 - p)pf’ and similarly (1 - g)g < (1 - p)pg’. Using 
these in the left member of (11) we obtain 

(1 - P)PY + (1 - P)Pf + (1 - P)“Pg’ - (1 - P)Pg > (1 - JG. 

Dividing by (1 - p)p, 

Pf’ + f + (1 - P)g’ - g > ;; 1” > 
or 

6 (Pf + (1 - P)g) > [; 1 ;;p > 

I 

(1 h h)3t ’ (1 A p)p’ 

completing the proof. 
If we replace the inequality (9) in the statement of the theorem 
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I 

by an equality, that is if we set 
1 

(l y y)r = (l _ P)p , we have a dif- 

ferential equation, the solutions of which form a one-parameter family 
of curves. The inequality (9) states that the permissible h functions 
corresponding to contact networks must have slopes greater than these 
y curves. If we solve this differential equation for the y curves we 
obtain 

Y(P) 
1 - Y(P) = c (1 PP). 

(12) 

This family of curves is plotted in Fig. 11 for C = 1/4, 1/3, 1/2, 1, 2, 
3, 4. Any possible k(p) f unction must cross curves of this family with 

FIG. ll. The family of curves satis- FIG. 12. A binary Channel used to obtain an 
fying the equation upper bound on the slape h’(P). 

Y(P) _ (y P 
1 -Y(P) (1 -PI' 

a greater slope. Consequently, any h(p) curve can cross one of these 
curves at most once in the open interval 0 < p < 1. Since the straight 
line of slope 1 which goes through the origin is one member of this 
family, any h(p) curve can cross this line once at most, say at the point 
p = po. Then applying the staircase construction as shown in Fig. 10, 
it can be seen that h(n)(p) approaches 0 as a limit for al1 fi < po, and 
approaches 1 for al1 p > po. Thus any network whose h(p) curve 
crosses this diagonal straight line can be composed with itself to obtain 
a network which improves reliability. In fact if we iterate the com- 
position n times, we wil1 have 

{ 

1 P>Po 
Lim h(n)(p) = po p = po 
n-+oo 0 P<Po 

where po is the (necessarily unique) diagonal crossing point. 
It is possible to place an upper bound on the slope h’(P) by a curieus 
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argument involving information theory. Consider the binary Channel 
shown in Fig. 12. The rate of transmission for this Channel wil1 be 

R = H(Y) - K(Y) 
= - (P - @) log (P - @) - (a + CQ) log Ca + eQ) 
+ (1 - Q>ww +ab3cd 
+ QC(P - 4 log (P - 4 + (a + 4 log (a + 41. 

For E approaching zero, (a + e) log (a + e) is approximated by its 
Taylor series 

aloga + (1 + log& +; E2+ . ..* 

Using this in the above for al1 terms containing E, we find that the con- 
stant terms and first order terms in e vanish. The first non-vanishing 
terms are given by 

R = (Q - (3; = [i - (Q - i)‘]f. 

It is evident from this last expression that R is maximized (when we 
vary Q) by Q = 1/2. This maximum R is, by definition, the Channel 
capacity C. Thus as e approaches zero in Fig. 12, the capacity C is 

. e2 
asymptotrc to G. 

Now consider a crummy relay which has probability P of being 
closed when the relay is energized and P - e of being closed when the 
coil is not energized. The relay may be thought of as a communication 
Channel for which the coil is the input and the contact the output. If 

e is very smal& the capacity wil1 be ?- 
4Pa * 

If we have n relays, with the 

same P and E, the total capacity of this sytem, using the n coils as 
input and the n contacts as output, is ne2/4pp, since the capacity of a 
set of independent channels is the sum of the individual capacities. 

We wish to show from these capacity considerations that the prob- 
ability function h(P) for our contact networks must satisfy 

dh n(1 - h)h .- 
dP ’ (1 - PIP ’ (13) 

Consider a network iV with n contacts and probability function h(p). 
Let the individual relays and contacts have probabilities PI and E as 
in Fig. 12. Then the network as a whole acts like a single relay with 
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parameters Jz(pl) and hs’(pJ~, (when E is small). As such, it has a 
capacity (h’~)~/4(1 - h)Jz. This capacity must be less than or equal 
to that obtained when these n relays are used in the best possible way. 
Hence, 

(h’+ 2 

4(1 - h)h ’ 4(1 yp,)fi, * 

This being true for any PI, we have, rearranging terms, the desired 
result 

h’<dm. 

If this inequality is changed to an equality, we obtain the differ- 
ential equation 

&dp dh 
m = d(1 - h)h 

the solution of which is 

G sin+ (1 - 2p) = sin-‘(1 - 2h) + 0. (14) 

For a given number of contacts n, a possible h(p) curve must cross the 
corresponding family of curves (14) always with less or equal slope. 

Another sort of upper bound on h(p) functions obtained from n 
contacts can be found by a different argument. A two-terminal net- 
work corresponds to a Boolean function of the n contacts involved. 
However, it is not possible to realize al1 Boolean functions using only 
one make contact for each variable. Suppose we ignore these condi- 
tions of realizability and consider the class of al1 Boolean functions of 
n variables. For any such Boolean function there wil1 be an h(p) 
function, h(p) being the probability that the function is equal to one 
if each variable has the (independent) probability p of being equal to 
one. Which Boolean functions have h(p) functions with the greatest 
slopes and show the greatest sharpening effect on probabilities? 

A Boolean function of n variables wil1 be called a quorum function 
if there is some s, 0 5 s 5 n, such that if less than s of the variables 
are one the function is zero, and if more than s of the variables are 
one the function is one. 

Theorem 2 

If the h curve for any quorum function of n variables, say hu, 
crosses the h curve of any other Boolean function of n variables, say 
h(p), then at the point of crossing po we have 

UPo) < ho’(Po) 
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that is, the quorum function has the greater slope. Furthermore, 

NP) > h(P) o<p<po 
VP> < ho(P) po < p < 1. 

This theorem says that, in a certain sense, the quorum functions 
are the best of al1 Boolean functions for our purposes of increasing 
reliability. 

Proof: For any Boolean function of n variables, the h&) polynomial 
is made up of a sum of terms of the form ppn+, a term of this form for 
each state of the variables for which the Boolean function has the value 
one with i of the variables equal to one. A quorum function has the 
value one for al1 states with i less than s, say, and zero for al1 states 
with i greater than s. Hence the h*(p) function is of the form 

8-1 

h(P) = c 
i-0 

Since h is not identical with /ZQ but is equal in value to it at po, it follows 
that the Jz polynomial must miss some terms before (or at) i equals s 
and have some extra ones after (or at) i equals S. In other words, 
we can write 

Iz(p) = : Bip+y-i 
i-0 

withBi< y 
0 

Let C(p) = 5 Bipiqn-i + apapn-a where <y is B, or 
i-0 

A, whichever is smaller. Then we wil1 have 

h*(p) = C(p) + 5 D@q- 
i=o 

h(p) = C(p) + 5 Eipipnmi 
i=r+1 

where the Di and Ei are non-negative integers and r is s - 1 or s 
according as B, or A was smaller. 

Now we note that for an expression of the form u(p) = piqn-i we 
have 

u’(p) = ipi-lqn-i _ (n _ ;)piqn-“-1 

= (’ - - 7 P ‘> u(p) = =$4(p). 
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Thus; = i-pn. 
~ 1s a monotone increasing function of i. 

P¶ 
Now al1 the 

terms in the sum in (15) for ?zQ correspond to smaller values of i than 
those in the sum for h. If we let u*(p) stand for any term in the sum 
in h* and u(p) stand for any term in the sum in h, we wil1 have 

and hence there wil1 exist a constant K such that 

ancl 

Summing the first inequality over al1 the different terms ug, and the 
second over al1 the U, we obtain 

C UQ’ -c K C UQ, K C u < Cu’. 

But evaluating at po, we have C UQ = C u, and consequently 

c uq’ = c ui, 

G(Po) < h’(Po). 

The remainder of the theorem follows readily by noting that to con- 
tradict it, since the h and ho curves are continuous, would require that 
they cross at a point different from po and in such a way as to con- 
tradict the first part of the theorem. 

NETWORKS OF A GNEN LENGTH AND WIDTH 

We have seen that the orders of flatness of h(p) in the neighbor- 
hoods of p = 0 and p = 1 are related to the “length” and “width” of 
the network in question. It is clear that in the case of practica1 im- 
portance, the values of p of interest wil1 be in these neighborhoods, 
that is, the relays wil1 be initially quite reliable. In this section we 
wil1 develop some results relating these orders of flatness with the 
number of elements in the network. 

Theorem 3 

If a network N has length 1 and width w it contains at least lw 
contacts. Equivalently, if h(p) b h e aves like Ap’ near p = 0, and if 
1 -h(p) behaves like B (1 - p)“, near p = 1, the corresponding network 
contains at least Zwicontacts. 
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Proof: We associate an integer with each contact in N by the fol- 
lowing process. Contacts directly connected to the left terminal of N 
are labeled “1,” contacts connected to those labeled 1 but not already 
labeled are numbered “2,” and so on inductively. In general, a con- 
tact wil1 be labeled n if it is possible to find a path to the left terminal 
through n - 1 other contacts but there is no such path through a 
smaller number. 

The set of contacts labeled n for any particular n from 1 to Z wil1 
be shown to form a cut set of the network. This is true since every 
path through the network starts at the left terminal with a contact 
labeled 1 and ends at the right terminal with a contact labeled Z or 
more (if any of the contacts touching the right terminal were labeled 
with numbers less than Z the length of N would be less than Z). Along 
any path, the numbering changes by 0 or &l in going from one con- 
tact to the next. Hence every path in going from contacts numbered 

-a- t _-- 
@ Et W 

I _ __ 

R(p) = (l-(l-p)VO 

FIG. 13. A series-parallel network of length 2 
and width w. 

FIG. 14. Another series-parallel 
network of length Z and width w. 

1 to those with numbers 21 must pass through every intermediate 
value. Consequently if al1 contacts labeled n (for 1 5 n I 1) are de- 
leted from N, al1 paths are broken and these contacts thus form a 
cut set. 

Since the network is of width w, every cut set contains at least w 
contacts. Thus there are at least w contacts labeled 1, at least w 
labeled2, ma., and at least w labeled 1. The network therefore contains 
at least WZ contacts. 

The alternative statement of Theorem 3 follows from remarks made 
in connection with Eqs. 1 and 2. 

It is possible to achieve the “dimensions” Z and w with exadly Zw 
contacts in a wide variety of ways. For example, we can make a 
series chain of Z contacts and parallel w copies of this (Fig. 13). Dually, 
w contacts can be paralleled and Z copies of this placed in series (Fig. 14). 



206 E. F. MOORE AND C. E. SHANNON [J. F. 1. 

Theorem 4 

A complete characterization of minima1 networks with dimensions 
.Z and w is the following. Let Y and 2 be the terminal nodes, s. be the 
set consisting of Y alone, and sz be the set consisting of 2 alone. In 
addition to s. and s1 there wil1 be Z - 1 subsets of nodes sl, s-, . . . > SI-1. 

There wil1 be precisely w elements connecting nodes in S% to nodes in 
s,+1 (n = 0, 1, . . .> z - 1). Finally, if any node in sj has m elements 
connecting it to nodes in ~i_~, then it has m elements connected to nodes 
. in sj+l (j = 1, 2, . . ., Z - 1). 

This means that any such minima1 network with dimensions Z and 
w can be obtained from the network of Fig. 13 by making appropriate 
connections among nodes in the same vertical line. When al1 the nodes 
in each vertical line are connected together, for example, the result is 
Fig. 14. Another possibility is shown in Fig. 1.5. 

FIG. 15. A hammock network of length 1 and width W. 

To show that any minima1 Zw network is of the form described in 
Theorem 4, first note that in our preceding proof, each of the numbered 
cut sets must contain precisely w elements, and these elements must run 
between elements of lower numbers and higher numbers. The nodes 
between elements numbered j - 1 and j wil1 belong to subset sj in the 
above characterization. Now suppose that some node in sj has m 
elements going to nodes in sj_1 and m + p going to nodes in sj+l(p > 0). 
The elements numbered j + 1 form a cut set of w elements. It is 
easily seen that if the m + p members of this, going from the node in 
question, are replaced by the m elements going to nodes in sj-1, then 
we wil1 stil1 have a cut set but one with less than w elements, a contra- 
diction. Consequently any minima1 network of dimensions Z and w is 
of the type described in our characterization. 

To show the converse, that any network of the type characterized 
has dimensions Z and w, note first that to go from one terminal to the 
other the path must pass through nodes belonging to sl, s2, . - . , SL-~. 
Hence any path is of length at least Z and the network is of length 1. 
Now consider any cut set c. We wil1 show that c contains at least w 
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elements. Consider the smallest-numbered contacts of c. Suppose one 
of these is connected from node A in S+~ to node 23 in si. Then either 
al1 elements from B to nodes in si-1 are in the cut set or the one in 
question is not essential to the cut set and may be eliminated, giving a 
stil1 smaller cut set. In the former case, this group of elements can 
be replaced by an equal number, those going from node B to members 
of s. 3+1, preserving the cut set property. Proceeding in this way, the 
cut set is gradually worked over toward the right-hand terminal, either 
reducing or keeping constant the number of elements in the cut set. 

3 4 5 

FIG. 16. Hammock networks of various lengths and widths. 

When al1 the elements of the cut set are adjacent to the right-hand 
terminal there are exactly w members. Consequently there were at 
least that many in the original cut set, as we wished to prove. 

An interesting type of minima1 Zw network is obtained by putting 
alternate connections in Fig. 13, leading to the brick-wal1 appearance 
of Fig. 54. When redrawn, pulling together the vertical connections, 
the network appears as in Fig. SB, and we wil1 cal1 networks of this 
type hammock networks. Figure 16 shows some of the simple cases 
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of hammock networks. It wil1 be seen that if both Z and w are 
even, there are two possible hammock networks with these dimensions. 
If either or both are odd, there is only one. Furthermore, the dual of 
a hammock network with length Z and width w is a hammock network 
with length w and width 1. These hammock networks are, in a sense, 
midway between the extreme minima1 Zw networks of Figs. 13 and 14, 
having half of the connections required to go from Fig. 13 to Fig. 14. 
In the case where Z and w are equal and odd the (unique) hammock 
network is self-dual. 

(To be continued) 


