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Abstract—Advances in the field of synthetic biology have been
key to demonstration of molecular computing systems in general
and DNA in particular. This paper presents an overview of how
continuous-time, discrete-time, and digital signal processing sys-
tems can be implemented using molecular reactions and DNA. In
this paper, discrete-time systems refer to sampled signals with con-
tinuous signal amplitude. Signals that are sampled in discrete time
steps with digital amplitude are referred to as digital signals. Delay
elements in sampled signals are implemented using molecular
reactions in the form of molecular transfer reactions. Completion
of all phases of transfer reactions once corresponds to a compu-
tation cycle. These molecular systems can be implemented in a
fully-synchronous, globally-synchronous locally-asynchronous or
fully-asynchronous manner. The paper also presents molecular
sensing systems where molecular reactions are used to implement
analog-to-digital converters (ADCs) and digital-to-analog convert-
ers (DACs). Molecular implementations of digital logic systems are
presented. A complete example of the addition of two molecules
using digital implementation is described where the concentra-
tions of two molecules are converted to digital by two 3-bit ADCs,
and the 4-bit output of the digital adder is converted to analog
by a 4-bit DAC. This system is demonstrated using both molec-
ular reactions and DNA. A brief comparison of molecular and
electronic systems is also presented.

Index Terms—Molecular systems, DNA, analog, digital, logic,
signal processing, digital signal processing, analog-to-digital con-
version, digital-to-analog conversion.

I. INTRODUCTION

T HE field of Molecular computing in general and DNA
computing in particular have advanced remarkably in last

20-25 years. The progress in the broad field of synthetic biol-
ogy continues to accelerate at a rate faster than Moore’s law that
refers to doubling in the number of devices on an integrated cir-
cuit (IC) chip every 18 months. A similar growth in synthetic
biology is referred as Carlson’s law [1], [2]. Early publications
on molecular computing [3] and DNA computing [4] demon-
strated the ability to compute using biological and chemical
molecules, as an alternative to computing using silicon ICs [5].
Molecular computing has the potential to revolutionize mon-
itoring concentrations or rates of change of concentrations of
proteins and targeted drug delivery.

There is significant interest in synthesis of molecular cir-
cuits, in vitro or in vivo, to understand biological processes or
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to re-engineer them by implementing particular computations
[6]–[11]. This broad field, referred as synthetic biology, has
seen remarkable progress since its inception in 2000. Efforts
in synthetic biology have culminated in manipulation or even
construction of a variety of molecular systems [12]–[15].

Molecular computing does not need to compete with tradi-
tional computing. Rather it is meant for activating or inhibiting
pathways or monitoring proteins or delivering drugs at a very
slow rate. The computation rates in molecular systems are
typically 10–15 orders of magnitude slower than traditional
computing. For example, monitoring a protein 4 times a day
requires a sample period of 21,600 seconds compared to a clock
period of 1 ns for a clock speed of 1 GHz. Fortunately, today’s
DNA circuits can meet these sample rate constraints for sim-
ple circuits. As the molecular computing technology evolves,
it will be possible to realize molecular circuits that can imple-
ment computationally complex operations and/or at faster rates.
Furthermore, massive parallelization is an important advantage
of chemical and biological systems. For example it is known
that more than 10M reactions per second can be performed in a
human cell [16]. This power can be exploited for a dense data
processing or storage in a cell-sized area.

A molecular system consists of a set of chemical reactions
where reactants combine to form products. For example (1)
shows a molecular reaction where S and E are reactants, P and
E are products and k is the rate constant.

S + E
k−→ P + E (1)

In this reaction, one molecule of E combines with one molecule
of S to produce one molecule of P and one molecule of E . The
dynamic behavior of reactant and product concentrations can
be modeled using mass-action kinetic model. In this model the
ordinary differential equations are used to model the concentra-
tion of each species as a function of time [17], [18]. For reaction
(1) we have

d P
dt

= −d S
dt

= kSE

d E
dt

= 0 (2)

The speed of reaction is proportional to the concentration of
inputs and the rate constant.

Whereas the mass-action kinetics model is a natural lan-
guage for describing biochemical reactions, additional issues
need to be considered for achieving more accurate modeling
of biochemical systems by ODEs from mass-action model. For
example if reaction (1) represents an enzymatic reaction with
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E , S and P are enzyme, substrate and product, respectively, the
Michaelis-Menten kinetics provides a more accurate modeling
of this reaction. Based on this model enzyme reactions are ini-
tiated by a binding interaction between the enzyme (E) and the
substrate (S) to form a complex (E S), which in turn is converted
into a product (P) and the enzyme. This can be represented by
the following reactions:

S + E
k f!
kr

E S
kcat−→ P + E (3)

where k f , kr , and kcat denote the rate constants [19] and
the double arrows between S and E S represent the fact that
enzyme-substrate binding is a reversible process. The ODEs
for these reaction can be solved for different assumptions of
the system to obtain the dynamic behavior of molecules. For
example for a more probable situation, when the enzyme con-
centration is much less than the substrate concentration, the rate
of product formation is given by

d P
dt

= Vmax
S

KM + S
= kcat E0

S
KM + S

. (4)

KM is Michaelis constant and defined as the substrate concen-
tration at which the reaction rate is at half-maximum and E0 is
the initial concentration of the enzyme. KM and E0 are specific
for each enzyme and can be obtained by experiment and are
available for most of enzymes.

Different in vivo or in vitro mediums have been used for
synthesizing a desired molecular system. For example, for
in vivo case, promising approaches have used RNA interfer-
ence(RNAi) and silencing (siRNA) to construct logic gates
[20]–[22]. For the in vitro the DNA strand-displacement [23]
is a well established medium for implementing and scaling
up molecular systems. In this paper we use DNA strand-
displacement as the medium for implementing and simulating
our designs.

Computing or signal processing systems can either be analog
or discrete-time. In analog processing, the input and output cor-
respond to continuous-time signals. In discrete-time processing,
the continuous-time signal is first sampled using a sampler,
then processed in discrete time steps, and finally converted to
a continuous-time signal if necessary by some form of interpo-
lation. If the sampled signal in a discrete-time system is also
discretized in amplitude, then it is referred to as a digital signal.
A digital signal processing (DSP) system requires an analog-
to-digital converter (ADC), processing of digital signals and
finally a digital-to-analog conversion (DAC). Most informa-
tion processing systems today store, process or transmit digital
information. Discrete-time signal processing provides signifi-
cantly higher accuracy than continuous-time since the delay
elements can be realized with high-precision. In [24], it was
recognized that the strength of a molecule was significantly
degraded in an analog delay line with increase in the order of
the system or the number of delays. In contrast, delay lines
implemented in a discrete-time molecular or DNA system do
not suffer from significant degradation. Digital processing pro-
vides even higher robustness and precise control in processing
the signal in temporal or spectral domain than discrete-time

signals. We differentiate discrete-time as sampled in time but
continuous in amplitude and digital as sampled in time and
discretized in amplitude.

This paper presents synthesis of molecular computing sys-
tems that can be analog, discrete-time or digital. Analog and
discrete-time processing of molecular systems have been pub-
lished before. Synthesizing molecular and DNA reactions to
implement continuous-time linear filters was first presented
in [25]. Signal processing systems, implemented as either
discrete-time or digital, contain delay elements. Delay elements
transfer the molecules from their inputs to outputs without alter-
ing the concentration every computation cycle. Delay elements
were first synthesized using molecular reactions in [26]. These
systems can operate either in a fully-synchronous manner [27]
using a two-phase clock, or in a locally-asynchronous globally-
synchronous manner [26], [28], or in a fully-asynchronous
manner [29] and [30]. The goal of this paper is two-fold. First,
this paper presents a review of past work on continuous-time
and discrete-time processing systems. Second, a new method-
ology to synthesize molecular ADCs and molecular DACs are
presented. Molecular and DNA implementations of a complete
digital processing system using ADC, digital computing and
DAC are presented. These molecular designs can be scaled up
with respect to their complexity. However, due to the resource
limitation in living cells, they are more suitable for in vitro
implementation.

This paper is organized as follows. In Section II, We pro-
vide a brief review of continuous-time systems and illus-
trate molecular implementation of a simple first-order analog
filter. Discrete-time signal processing systems using fully-
synchronous and locally-asynchronous globally-synchronous
manner are reviewed in Section III. Molecular circuits for
ADCs, digital logic, DACs, and a complete digital processing
system that adds two numbers using 2 ADCs, one digital adder,
and 1 DAC are described in Section IV. DNA implementation
of the complete digital system and its simulation results are pre-
sented in Section V. A comparison of molecular and electronic
systems is presented in Section VI. Finally Section VII provides
discussion and concluding remarks.

II. MOLECULAR CONTINUOUS-TIME SYSTEMS

Molecular implementations of continuous-time or analog
systems have been described in many past publications [31]–
[34]. Study of analog molecular systems is important since it
has been proven that computations in living cells are mostly
analog [31]–[33].

Analog computations can be implemented with chemical
reaction networks (CRNs) efficiently with respect to the num-
ber of reactions and molecular species. For example, as pre-
sented for the first time in [33] and [34], implementing a
molecular adder via analog computation is simple: we have two
input concentrations to be added; both are transferred to the
same molecular type by means of two independent reactions. In
one application of an in vivo analog adder, two inputs may cor-
respond to regulating the expressions of a common protein from
two independent genetic promoters [33]. Analog multiplication
can be simply implemented by two molecular reactions [35]:
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x + y
k1−→ x + y + z

z
k2−→∅ (5)

From mass-action kinetics model we have

dz
dt

=k1xy − k2z (6)

where x ,y, and z are molecular concentrations of their cor-
responding molecular types. In the steady-state dz

dt = 0, thus,
z = k1

k2
xy. The output z represents a scaled version of the prod-

uct xy. Analog implementation of more complex functions such
as square roots and logarithmic additions have been presented
in [34]. Implementation of linear continuous-time systems with
biochemical reactions has been presented in [25]. We briefly
describe this method with an example. Each signal, u, is repre-
sented by the difference in concentration between two particular
molecular types, u+ and u−, where u+ and u− are defined as:

u+ =
{

u i f u > 0
0 otherwise

(7)

and

u− =
{ |u| i f u < 0

0 otherwise.
(8)

Any linear continuous-time system can be implemented using
three building blocks: integrator, gain and summation. Using
mass-action kinetics model, these blocks can be approximated
by a minimal set of chemical reactions, referred as: catalysis,
degradation, and annihilation reactions described by (9), (10),
and (11), respectively.

u± γ−→ u± + y± (9)

u± γ−→∅ (10)

u+ + u− η−→∅, (11)

where γ and η ∈ R+. Reaction (9) is a concise representation
of the following two reactions:

u+ γ−→ u+ + y+

u− γ−→ u− + y−. (12)

This notation is also adopted for other reactions with double
superscripts. For each molecular type, an annihilation reaction
is necessary to ensure a minimal representation of the molecule.
For example, if y is used in a reaction network, the reaction
y+ + y−−→∅ should be added.

Integration: Reactions (13) implement integration, y(t) =∫ t
0 u(τ )dτ + y(0) with t ∈ R:

u± α−→ u± + y±, (13)

where α ∈ R+. For these reactions we have

dy+
dt = αu+

dy−
dt = αu−

}

⇒ dy
dt

= dy+

dt
− dy−

dt

= αu+ − αu− = αu ⇒ y(t) = α

∫ t

0
u(τ )dτ + y(0). (14)

Fig. 1. Constructing linear I/O systems based on transfer function Y (s)
U (s) =

B(s)
A(s) , using integration, gain, and summation blocks.

Fig. 2. A first order low-pass continuous-time filter.

Gain and Summation: The following reactions output a lin-
ear combination of the input signals, ui , with corresponding
gain ki .

u±
i

γ ki−→ u±
i + y±

y± γ−→∅, (15)

where y represents the output, ki , γ ∈ R+ for i ∈ 1, 2, . . . , n.
In the special case n = 1, this chemical representation approx-
imates the gain block, y = k1u1 for k ≥ 0. For n ≥ 2 this
chemical representation approximates the summation block,
y = ∑n

i=1 ki ui [25]. Suppose U (s) and Y (s) represent the
Laplace transforms of input and output, respectively. Any lin-
ear I/O system with the transfer function Y (s)

U (s) = B(s)
A(s) can be

approximated by using integration, gain, and summation blocks
where B(s) = bnsn + bn−1sn−1 + . . . + b1s + b0 and A(s) =
sm + am−1sm−1 + . . . + a1s + a0 and m ≥ n. Figure 1 illus-
trates how Y (s)

U (s) can be constructed using these basic building
blocks [36], [37].

A PI controller has been implemented in [25] using these
blocks. Here, we illustrate an example molecular implementa-
tion of a first-order low-pass continuous-time filter, shown in
Figure 2. The transfer function for this filter is 1

s+a0
. It can be

approximated by the following reactions:

x(t) = u(t) − a0 y(t) →

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y± γ a0−→ y± + x∓

u± γ−→ u± + x±

x± γ−→ ∅
x+ + x− η−→ ∅
u+ + u− η−→ ∅

(16)
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Fig. 3. Block diagram for the moving-average filter [26].

dy
dt

= x(t) →
{

x± γ−→ x± + y±

y+ + y− η−→ ∅
(17)

III. MOLECULAR DISCRETE-TIME SYSTEMS

For discrete-time systems the corresponding computations
start after the inputs are sampled at specific points in time.
In these systems the timings of signal transfers need to be
synchronized in order to avoid any interference in computa-
tions. The concept of a computational cycle in a molecular
system is critical. Three different synchronization schemes have
been proposed; these include: fully-synchronous, globally-
synchronous locally-asynchronous, and fully-asynchronous.
Fully synchronous systems are synchronized by a two-
phase clock [27], [26]. In a globally-synchronous locally-
asynchronous systems, three proteins, referred as Red (R),
Green (G) and (Blue) are introduced. The transfer of R to G, G
to B and B to R completes a computational cycle. The global
RGB clock provides global synchronization [28], [26]. Fully-
asynchronous systems do not make use of any global clock
[29], [30]. Typically, RG B clocked systems are the fastest,
while the fully-asynchronous systems are the slowest as these
involve more phases of transfers. The protein transfer operation
is a slow operation and is the bottleneck in molecular systems
with respect to sample period. Although fully-synchronous sys-
tems require a two-phase clock, this clock is designed from a
4-phase protein transfer mechanism. This paper presents a brief
review of the fully-synchronous and the RG B systems. Fully-
asynchronous systems are not reviewed in this paper; however,
the reader is referred to [29], [30].

All reactions in the discrete-time system are implemented
using only two coarse rate categories for the reaction rate con-
stants, i.e., k f ast and kslow. Given reactions with any such set
of rates, the computation is correct. It does not matter how fast
the fast reactions are or how slow the slow reactions are - only
that all fast reactions fire relatively faster than slow reactions.
We illustrate both schemes with a simple example, a moving-
average filter. In fact, it is a first-order discrete-time low-pass
filter. The circuit diagram for the filter is shown in Figure 3.
It produces an output value that is one-half the current input
value plus one-half the previous value. Given a time-varying
input signal X , the output signal Y is a moving average, i.e.,

a smoother version of the input signal. Since there is no feed-
back in the system, it is called a finite impulse response (FIR)
filter [38].

A. Fully-Synchronous Framework

In this framework a global clock signal synchronizes sig-
nal transfers in the system. For a molecular clock, reactions
are chosen that produce sustained oscillations in terms of
chemical concentrations. With such oscillations, a low con-
centration corresponds to a logical value of zero; a high con-
centration corresponds to a logical value of one. Techniques
for generating chemical oscillations are well established in
the literature. Classic examples include the Lotka-Volterra,
the Brusselator, and the Arsenite-Iodate-Chlorite systems [39],
[40]. Unfortunately, none of these schemes is quite suitable for
synchronous sequential computation: the required clock sig-
nal should be symmetrical, with abrupt transitions between the
phases. A new design was proposed in [26] and [27] for multi-
phase chemical oscillator. For a 4-phase oscillator the phases
can be represented by molecular types R, G, B, V . First consider
the reactions

2Sr
kslow−→ r + 2Sr

2Sg
kslow−→ g + 2Sg

2Sb
kslow−→ b + 2Sb

2Sv
kslow−→ v + 2Sv (18)

R + r
kfast−→ R

G + g
kfast−→ G

B + b
kfast−→ B

V + v
kfast−→ V . (19)

In reactions (18), the molecular types r, g, b, v are generated
slowly and constantly, from source types Sr , Sg, Sb, Sv, whose
concentrations do not change with the reactions. In reactions
(19), the types R, G, B, V quickly consume the types r, g, b, v,
respectively. Call R, G, B, V the phase signals and r, g, b, v the
absence indicators. The latter are only present in the absence of
the former. The reactions

R + v
kslow−→ G

G + r
kslow−→ B

B + g
kslow−→ V

V + b
kslow−→ R (20)

transfer one phase signal to another, in the absence of the pre-
vious one. The essential aspect is that, within the R, G, B, V
sequence, the full quantity of the preceding type is transferred
to the current type before the transfer to the succeeding type
begins. To achieve sustained oscillation, we introduce positive
feedback. This is provided by the reactions
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Fig. 4. simulation results for R and B phases of a four-phase oscillator [26].

2G
kslow!
k f ast

IG

R + IG
kslow−→ 3G

2B
kslow!
k f ast

IB

G + IB
kslow−→ 3B

2V
kslow!
k f ast

IV

B + IV
kslow−→ 3V

2R
kslow!
k f ast

IR

V + IR
kslow−→ 3R (21)

Consider the first two reactions. Two molecules of G combine
with one molecule of R to produce three molecules of G. The
first step in this process is reversible: two molecules of G can
combine, but in the absence of any molecules of R, the com-
bined form will dissociate back into G. So, in the absence of
R, the quantity of G will not change much. In the presence
of R, the sequence of reactions will proceed, producing one
molecule of G for each molecule of R that is consumed. Due to
the first reaction 2G

kslow−→ IG , the transfer will occur at a rate that
is super-linear in the quantity of G; this speeds up the transfer
and so provides positive feedback. Suppose that the initial quan-
tity of R is set to some non-zero amount and the initial quantity
of the other types is set to zero. We will get an oscillation among
the quantities of R, G, B, and V .

One requirement for a clock in synchronous computation is
that different clock phases should not overlap. A two-phase
clock is used for synchronous structures: concentrations of
molecular types representing clock phase 0 and clock phase 1
should not be present at the same time. To this end, two nonad-
jacent phases, say R and B in a four-phase RGBV oscillator, are
chosen as the clock phases. The scheme for chemical oscillation
works well. Figure 4 shows the concentrations of R and B as a
function of time, obtained through differential equation simula-
tions of the Reactions (18), (19), (20), and (21). It may be noted
that the two phases R and B are essentially non-overlapping.

Fig. 5. Block diagram for synchronous implementation of the moving-average
filter [26].

Fig. 6. Set of molecular reactions for the synchronous implementation of the
moving-average filter [26].

Fig. 7. Block diagram for the asynchronous implementation of the moving-
average filter [26].

The delay and computation elements for the moving average
filter in Figure 5 are implemented by the reactions in Figure 6.
As Figure 5 shows each delay element, D, is modeled by two
molecular types, D and D′. In the presence of B, the input sig-
nal X is transferred to molecular types A and C ; these are both
reduced to half and transferred to D′ and Y , respectively. In the
presence of R, D′ is transferred to D. Therefore, in the follow-
ing phase B, half of the new sample adds with the half of the
previous sample stored in D.

B. Globally-Synchronous Locally-Asynchronous Framework

The globally-synchronous locally-asynchronous framework
is illustrated in Figure 7. It contains no clock signal; rather it
is “self-timed” in the sense that a new phase of the computa-
tion begins when an external sink removes the entire quantity
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Fig. 8. (i) Implementing delay elements using the 3-phase asynchronous
scheme. (ii) Cascaded delay elements implemented using asychronous
scheme [26].

of molecules Y , i.e., the previous output value, and supplies a
new quantity of molecules X , i.e., the current input value. Each
delay element in this framework is modeled by three molecu-
lar types, namely RG B. Figure 8 shows how the computations
in asynchronous framework are performed in three phases and
how delay elements are implemented using three molecular
types Ri , Gi , Bi . In this framework, the moving-average filter is
implemented by the reactions in Figure 9. The molecular types
corresponding to signals are X , A, C , R, G, B, and Y . To illus-
trate the design, we use colors to categorize some of these types
into three categories: Y and R in red; G in green; and X and
B in blue. The group of the first three reactions shown in the
S1 column of Figure 9 transfers the concentration of X to A
and to C , a f anout operation. The concentrations of A and C
are both reduced to half, scalar multiplication operations. The
concentration of A is transferred to the output Y , and the con-
centration of C is transferred to R. The transfer to R is the first
phase of a delay operation. Once the signal has moved through
the delay operation, the concentration of B is transferred to the
output Y . Since this concentration is combined with the con-
centration of Y produced from A, this is an addition operation.
The final group of three reactions shown in the S1 column of
Figure 9 implements the delay operation. The concentration of
R is transferred to G and then to B. Transfers between two color
categories are enabled by the absence of the third category: red
goes to green in the absence of blue; green goes to blue in the
absence of red; and blue goes to red in the absence of green. The
reactions are enabled by molecular types r , g, and b that we call
absence indicators. The absence indicators ensure that the delay
element takes a new value only when it has finished processing
the previous value. In the group of reactions shown in the S2
column of Figure 9 molecules of types R′, G ′, and B ′ are gen-
erated from the signal types that we color-code red, green, and
blue, respectively. The concentrations of the signal types remain
unchanged. This generation/consumption process ensures that
equilibria of the concentrations of R′, G ′, and B ′ reflect the
total concentrations of red, green, and blue color-coded types,
respectively. Accordingly, we call R′, G ′, and B ′ color con-
centration indicators. They serve to speed up signal transfers
between color categories, and provide global synchronization.

In the group of reactions shown in the S3 column of Figure 9,
molecules of the absence indicator types r , g, and b are gener-
ated from external sources Sr , Sg , and Sb. At the same time,
they are consumed when R′, G ′, and B ′ are present, respec-
tively. Therefore, the absence indicators only persist in the
absence of the corresponding signals: r in the absence of red
types; g in the absence of green types; and b in the absence
of blue types. They only persist in the absence of these types
because otherwise “fast” reactions consume them quickly.

Finally, the reactions shown in the S4 column of Figure 9
provide positive feedback kinetics. These reactions effectively
speed up transfers between color categories as molecules in one
category are “pulled” to the next by color concentration indi-
cators. Note that the concentration of the input X is sampled
in the green-to-blue phase. The output Y is produced in the
blue-to-red phase.

Although the RG B scheme doesn’t have an independent
global clock signal it provides a global synchronization by cat-
egorizing signals into three phases, so called RG B phases.
Many local RG B blocks enable locally-asynchronous com-
putation while global color concentrations, R′,G ′,B ′, provide
global synchronization. In fact, they form a nonsymmetric
clock dependent on the signal values of local RG B blocks.

Another fully-asynchronous framework has been proposed
in [30]. In a fully-asynchronous system signal transfers and
computations start from the input of the system and progress
to its output in multiple phases. Each delay element in a fully-
asynchronous system is modeled by two molecular types [30]
and introduces two phases. Reactions for each phase are fired
as soon as the preceding phase is completed. In addition to FIR
filter, an IIR filter and an 8-point FFT have been implemented
using this framework [26], [30].

IV. MOLECULAR SENSING AND DIGITAL

COMPUTING SYSTEMS

Although analog computing systems are important due to
their efficiency and their application in in vivo systems, digi-
tal computing systems are more robust [33], [41], [42]. In fact,
regardless of the implementation technology, the fundamental
reason for the robustness of the digital computation lies in infor-
mation theory: information is coded across many 1-bit-precise
interacting computational channels in the digital approach but
on one channel in the analog approach [33].

Although complex molecular digital systems may be imprac-
tical today, these will be practical in near future as synthetic
biology is seeing remarkable progress for synthesizing more
complex systems in vitro especially from DNA. As a practical
in vitro example, implementation of a scalable digital system,
so called seesaw gates, with DNA strand-displacement reac-
tions have been used to implement simple logical AND/OR
gates, and 2-bit-precise square roots in [42].

Roughly speaking, in a digital molecular system, absence or
existence of a molecular type defines whether the related sig-
nal is logically ‘0’ or ‘1’, respectively. More precisely, if the
concentration of a molecular type is close to 0 nM it repre-
sents logical ‘0’, while if it is close to a distinguishable nonzero
value, it represents logical ‘1’. In this paper, for in vitro DNA
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Fig. 9. Set of molecular reactions for the asynchronous implementation of the moving-average filter [26].

Fig. 10. Block diagram of a general system developed in this paper.

implementations, we consider concentrations near 1 nM as the
logical value ‘1’ and near 0 nM as logical value ‘0’.

Molecular digital systems require molecular analog-to-
digital conversion (ADC). This paper, presents a new molecular
implementations of ADCs and DACs. Figure 10 illustrates a
complete digital system.

We present molecular implementations of a k-bit analog to
digital converter and a k-bit digital to analog converter. We
also review the molecular implementation of basic digital logic
gates. Using these gates, we demonstrate a 3-bit molecular
binary adder including two ADCs required to sample and dig-
itize the two input operands and a DAC to output an analog
signal. A DNA implementation of the complete system is also
demonstrated in Section V. It can be noted that all of the molec-
ular reactions are rate-independent. In other words, no matter
what the speed rates of the reactions are and how they may
change during the computation, the steady-state concentrations
compute the correct desired outputs.

A. Analog to Digital Converter (ADC)

This subsection describes molecular implementation of ana-
log to digital converter. A 3-bit example is considered. Let the
input molecular type, i , have an analog concentration between
0 nM and 8 nM. The output is a 3-bit digital number x =
x2x1x0. Each bit is considered as logical ‘0’ if its concentra-
tion is approximately 0 nM and logical ‘1’ if its concentration
is approximately 1 nM.

We start with the most significant bit, x2. This bit should
be set to 1 when i is larger than 4 nM and to zero when i is

TABLE I
STABLE CONCENTRATION OF MOLECULES i , x2, AND w2 AFTER

COMPLETION OF REACTIONS (22)

less than 4 nM. Reactions (22) implement a one-bit comparator
that determines x2. The initial concentration of T2 represents
the threshold for the comparator which is set to 4 nM.

i + T2−→w2

i + x2n−→x2 + i

T2 + x2−→x2n + T2 (22)

In the first reaction, i and T2 molecules combine and the one
with larger initial concentration remains and the other one van-
ishes. The first reaction is independent of the second and third
reactions because i and T2 remain unaltered in the second
and third reactions. However, activation of the second or third
reactions depends on the outcome of the first reaction. After
completion of the first reaction only one of the second or third
reactions is active. If i is larger than T2, the third reaction stops
firing while the second reaction transfers all molecules of x2n
to x2. Alternately, if i is less than T2, second reaction stops and
third reaction transfers x2 to x2n completely. x2 and x2n are ini-
tialized to 0 nM and 1 nM, respectively. Note that in general
for a k-bit ADC, each bit, i.e., x j where j = 0, 1, . . . , k − 1,
is modeled by two molecular types, i.e., x j and x jn , called the
bit and its complement molecular types. All of the x j species
are initialized to 0 nM and x jn species are initialized to 1 nM.
Furthermore, for each j , the total concentration of x j and x jn ,
is constantly 1 nM, i.e., if the concentration of x j is C , then the
concentration of x jn is (1 − C), both in nM.

Table I shows the final concentrations for i , x2 and w2 after
completion of Reactions (22). i0 denotes the initial concentra-
tion of i . If i0 > T2 then i can be used to compute the second
bit of x , i.e., x1. If i0 < T2 then w2 can be used to determine x1.
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TABLE II
STABLE MOLECULAR CONCENTRATIONS AFTER COMPLETION

OF REACTIONS (23) AND (24)

Reactions (23) and (24) determine x1 for the above two cases.
The initial concentrations for both threshold molecules, T1 and
T ′

1, are equal to 2 nM. Similar to Reactions (22), the first three
reactions of (23) implement a one-bit comparator. However,
here, the molecular concentration of i and T1 are compared to
determine x1 when x2 is nonzero. This is equivalent to compar-
ing initial i0 to 6 nM. Similarly the first three reactions of (24)
compare w2 and T ′

1 to determine x1 when x2 is zero. This is
equivalent to comparing initial i0 to 2 nM.

x2 + i + T1−→w1 + x2

x2 + i + x1n−→x1 + i + x2

x2 + T1 + x1−→x1n + T1 + x2

x2n + w1−→i + T1 + x2n (23)

x2n + w2 + T ′
1−→w′

1 + x2n

x2n + w2 + x1n−→x1 + w2 + x2n

x2n + T ′
1 + x1−→x1n + T ′

1 + x2n

x2 + w′
1−→w2 + T ′

1 + x2 (24)

Before the concentration of x2 reaches its stable value, both
x2 and x2n may have nonzero concentrations and both sets of
Reactions (23) and (24) can be fired. The fourth reactions of
(23) and (24) are added to undo undesired reactions fired during
the transient time. For example, when the final concentration of
x2 is zero the fourth reaction of (23) transfers w1 back to i and
T1 in order to undo the first reaction. The initial concentrations
for x1 and x1n are 0 nM and 1 nM, respectively. After x1 and
x1n are stabilized to their final concentrations, depending on the
initial value of i , one of them has the concentration of 1 nM and
the other 0 nM.

Except i , none of the molecular types participating in
Reactions (22) is altered by Reactions (23) and (24). However,
Reactions (23) and (24) need the final concentrations of x2 and
x2n from Reactions (22). Thus, the concentrations of molecules
of Reactions (23) and (24) reach stable values after reactions
in (22) are completed. For different values of i0, Table II
shows the final concentrations after Reactions (23) and (24) are
completed.

Finally, in order to determine the least significant bit (LSB) of
x , i.e., x0, depending on i0’s value, the molecular types under-
lined in Table II are used. For each range of i0, the concentration
of its related molecular type is compared to 1 nM to determine
x0. For example when i0 > 6, Reactions (25) are used to deter-
mine x0. The initial concentration of threshold molecules T0
is 1 nM. Because both x2 and x1 are nonzero for i0 > 6, the
first three reactions compare i with 1 nM. It is equivalent to
comparing i0 with 7 nM. That is to say, for i0 > 6, x0=1 nM if
i0 >7 nM and x0=0 nM if i0 <7 nM. The last two reactions of

(25) are used to undo the undesirable combination of i and T0
during the transient time when any of x2 or x1 is zero.

x2 + x1 + i + T0−→w0 + x2 + x1

x2 + x1 + i + x0n−→x0 + i + x2 + x1

x2 + x1 + T0 + x0−→x0n + T0 + x2 + x1

x2n + w0−→i + T0 + x2n

x1n + w0−→i + T0 + x1n (25)

Similarly for each range of i0 five reactions are used to deter-
mine x0. Due to space limit, these three sets of reactions, each
containing five reactions, are not listed here.

The number of bits or the resolution of ADC can be increased
by adding the required comparisons and their related undo
reactions. In general for k-bit ADC 2k+1 + 2(k − 1) molecu-
lar types are required while the number of required reactions
is

∑k
j=1 ( j + 2)2 j−1 = (k + 1)2k − 1. The precision (sensi-

tivity) of ADC depends on its acceptable input range and the
number of its output bits.

Figure 11 shows results for the mass-action kinetic model
simulation of the proposed ADC for different values of i0.

B. Molecular Digital Logic Circuits

In this section we demonstrate how digital designs can be
implemented by molecular reactions. We describe molecular
implementations of simple logic AND/OR/XOR gates, a binary
adder, and a square-root unit. The method we use here for
implementing logical gates is similar to the method presented
in [43]. However, in [43] three regulation bit operation reac-
tions are needed for each bit, Whereas these reactions are not
required in our complete system implementation due to the
self-regulated bits output by the proposed ADC. Here, self-
regulated means for each bit only the related molecular type,
x j , or its complement, x jn , but not both, has stable non-zero
concentration.

1) Logic Gates: We only consider two-input gates AND,
OR, and XOR. Gates with more than two inputs can be easily
implemented by cascading two-input gates. Let X and Y denote
the inputs of a gate and Z the output.

AND Gate: We start with an AND gate. The output of a log-
ical AND gate is ‘1’ only if both inputs are ‘1’. It means that
if either X=’0’ or Y =’0’ then the output Z should be zero. In
other words, when concentration of xn or yn , i.e., complement
molecular types of inputs, is nonzero molecules of z should be
transferred to zn in order to set Z=’0’. This can be implemented
by Reactions (26).

xn + z−→xn + zn

yn + z−→yn + zn . (26)

When both x and y have stable nonzero concentrations, all
molecules of zn should be transferred to z in order to set Z=’1’.
This can be implemented by Reactions (27).

x + y−→x + y + z′

2z′−→∅
z′ + zn−→z. (27)
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Fig. 11. Simulation results of 3-bit molecular ADC for different input concentrations.

In the first reaction of (27), x combines with y to generate z′,
an indicator that Z should be set to ‘1’. z′ is transferred to an
external sink, denoted by ∅, in the second reaction. (This could
be a waste type whose concentration we do not track.) When
molecules of both x and y are present, these reactions maintain
the concentration of z′ at an equilibrium level. When either x
or y is not present, z′ gets cleared out. In the last reaction, z′

transfers zn to z.
One should note that the input concentrations don’t change

in logic computations. This enables the outputs of the ADC to
be input to other logic gates if needed.

OR Gate: The output of an OR gate is ‘1’ if any of its inputs
is ‘1’. For molecular implementation it means that if either x or
y has nonzero concentration then all molecules of zn should
be transferred to z. It is implemented by Reactions (28). In
the other case, i.e., when both inputs have zero concentrations,

molecules of z should be transferred to zn as implemented by
Reactions (29).

x + zn−→x + z

y + zn−→y + z. (28)

xn + yn−→xn + yn + z′

2z′−→∅
z′ + z−→zn . (29)

XOR Gate: The output of a two-input XOR gate is ‘1’ when
inputs are complements of each other. In molecular imple-
mentation it means that when either x and yn or xn and y
have nonzero concentrations, molecules of zn should be trans-
ferred to z as implemented by Reactions (30). For the inputs
with the same logical level the output should set to zero and
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Fig. 12. Schematic of the 3-bit adder; (a) Block diagram, (b) Internal circuits
for HA and FA blocks.

molecules of z should be transferred to zn . This is implemented
by Reactions (31).

xn + y−→xn + y + z′

x + yn−→x + yn + z′

2z′−→∅
z′ + zn−→z. (30)

xn + yn−→xn + yn + z′
n

x + y−→x + y + z′
n

2z′
n−→∅

z′
n + z−→zn . (31)

NAND, NOR, and XNOR gates can be implemented by
exchanging z and its complement in the transfer reactions, zn
in the opposite directions of those of the AND, OR, and XOR
gates, respectively.

2) Binary Adder: By cascading AND, OR, and XOR gates
we implement more complex digital systems such as a 3-bit
adder. The adder consists of one half adder (HA) for the LSB
and two full adders (FA) as shown in Figure 12a. Internal
schematics of HA and FA are shown in Figure 12b. A gen-
eral n-bit adder can be easily implemented by extending 3-bit
adder using additional FAs for new bits. Cascaded gates for
the adder are implemented by molecular reactions presented
in Section IV.B. However, other molecular logic gates such as
seesaw gates [42] can also be used. In order to verify the func-
tionality of the 3-bit adder we implement the structure shown in
Figure 13. Two analog concentrations, x and y, are converted
to two 3-bit digital data using the proposed ADC. These two
digital numbers are added using the 3-bit adder. The output,
s = s3s2s1s0, is a 4-bit digital number representing the digi-
tal sum of x and y. Figure 14 shows the simulation results for
different concentrations of inputs, x and y.

Fig. 13. Block diagram of the system for verifying molecular 3-bit adder.

3) Square-Root Unit: As another example of digital com-
puting, we implement square-root of a 4-bit number. Figure 15
shows the schematic of its circuit. In Figure 15, the three-
input NAND gate can be implemented by cascading a two-input
AND gate with a two-input NAND gate. However, it is more
efficient to implement three-input NAND by reactions (32). In
these reaction x1, x2, and x3 are inputs and y is the output.

x1n + yn−→x1n + y

x2n + yn−→x2n + y

x3n + yn−→x3n + y

x1 + x2−→x1 + x2 + x12

x12 + x3−→x3 + y′

2y′−→∅
y′ + y−→yn (32)

The strategy used for the direct implementation of three-input
NAND in (32) is similar to that of two-input NAND.

Figure 16 shows the simulation results for the square root
circuit implemented by molecular reactions.

C. Digital to Analog Converter (DAC)

After performing computations in digital form, in order to
convert the computed signal to its analog form, a DAC is
required. Using recombinase-based logic and memory, a DAC
has been implemented in [44]. For this DAC various digital
combinations of the input inducers result in multiple levels
of analog gene expression outputs on the basis of the varying
strengths of the promoters used and the sum of their respective
outputs. This section presents molecular implementations of a
k-bit DAC with controlling the impact of each bit on the analog
output concentration. Reactions (33) show a 1-bit template for
implementing DAC.

x j + Vj−→out + x j + M j

out + x jn + M j−→x jn + Vj (33)

where x j and x jn , respectively, represent the input bit and its
complement molecular type. out is the analog output of DAC
with initial concentration of zero. Molecular type Vj denotes
the value of the input bit. In other words, it defines the amount
of concentration that is added to the output if input bit, x j , is
nonzero. If x j is the LSB then Vj is initialized to 1 nM and if
it is the bit next to the LSB then Vj is initialized to 2 nM and
so on.
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Fig. 14. Simulation results of the molecular implementation of the system shown in Figure 13.

Fig. 15. Schematic for 4-bit Square-root unit.

Even when the stable value of x j is zero, during the transient
state x j may have nonzero concentration. The second reaction
of (33) prevents undesired output increase due to the nonzero

concentration of x j in transient state. M j controls the amount of
deducted concentration from the output such that this amount is
the same as the amount added to output undesirably during the
transient state. In other words, without M j , the second reaction
continues transferring out molecules to Vj during the steady-
state. However, this degrades the effects of other bits on the
DAC’s output, since the molecular type out is common for all
bits. The initial concentration for M j is zero.

The 1-bit template presented here can be easily extended to a
k − bit DAC; for each additional bit, one instance of Reactions
(33) is added. Therefore, to construct a k-bit DAC, a chemical
reaction network including k copies of the 1-bit template are
used with proper initial values of Vj . As an example, Reactions
(34) illustrate a 4-bit DAC using the proposed template. The
initial concentrations of V0, V1, V2, and V3 are 1, 2, 4, and 8 nM,
respectively.
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Fig. 16. Kinetics simulations that compute the Square-root of 0, 1, 4, and 9 using the molecular implementation of unit shown in Figure 15.

x0 + V0−→out + x0 + M0

out + x0n + M0−→x0n + V0

x1 + V1−→out + x1 + M1

out + x1n + M1−→x1n + V1

x2 + V2−→out + x2 + M2

out + x2n + M2−→x2n + V2

x3 + V3−→out + x3 + M3

out + x3n + M3−→x3n + V3 (34)

D. A Complete Molecular Digital System

We now illustrate molecular implementation of a digital
adder where concentrations of two analog molecules x and y
are converted to 3-bit digital, then added using a binary adder,
and the 4-bit output is converted to an analog value s. Two
molecular ADCs, a molecular digital adder, and a molecular
DAC are used to construct a complete system as shown in
Figure 17. The functionality of the complete molecular sys-
tem is verified. Figure 18 shows the simulation results for the
complete system illustrated in Figure 17 for different input
concentrations.

V. DNA IMPLEMENTATION

This section describes mapping of the molecular reactions
to DNA. We illustrate mapping the complete digital adder of
Section IV.D including ADC, adder and DAC to DNA strand
displacement reactions.

Fig. 17. Block diagram of a simple prototype developed and verified in this
paper.

Considering each strand (single or double) of DNA as a
molecule, it is possible to implement CRNs with DNA strand-
displacement mechanism. For example Figure 19 shows DNA

strand-displacement primitive for implementing A + B
f
!
r

C + D.
Toehold 1 of strand A starts binding to its complement toe-

hold 1∗ of B. Then branch migration happens and domain 2 of
A displaces domain 2 of strand 2−3. Finally, toehold 3 and 3∗

are separated and two new strands (molecules), C and D, are
produced.

A general method of mapping CRNs to DNA strand-
displacement reactions has been presented in [23] by
Soloveichik, et. al. In their method based on the number of
reactants a chemical reaction is converted to a series of DNA
strand-displacement reactions similar to Figure 19. Similarly,
for our design we generate the corresponding DNA reactions
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Fig. 18. Simulation results for the system shown in Figure 17.

Fig. 19. Implementation of A + B
f
!
r

C + D using DNA strand-displacement

mechanism.

and simulate the system using the kinetic differential equations
to characterize the behavior of the system.

The initial concentrations of auxiliary complexes is set to
Cmax = 10−5M, and the maximum strand displacement rate
constant is qmax = 106 M−1 s−1. For all of the reactions the
rate constant is considered as 105 M−1S−1. Figure 20 shows
the ODE simulation results for the DNA implementation of the
complete system illustrated in Figure 17 for different inputs.

VI. COMPARISON BETWEEN MOLECULAR

AND ELECTRONIC CIRCUITS

Just as electronic systems implement computation in terms of
voltage (energy per unit charge), molecular systems compute

in terms of chemical concentrations (molecules per unit vol-
ume). One of the great successes of electronic circuit design has
been in abstracting and scaling the design problem. The physi-
cal behavior of transistors is understood in terms of differential
equations – say, with models found in tools such as SPICE [45].
However, the design of circuits occurs at more abstract levels –
in terms of switches, gates, and modules. Research in molecular
computation could benefit from this hierarchical approach.

We point out several fundamental differences in character-
istics of molecular and electronic circuits. These are sum-
marized in Table III. Fanout operations in electronic circuits
are free while these are expensive in molecular implementa-
tions. Addition operations are free in molecular systems, but
are expensive in electronic circuits. The critical path of an
electronic circuit is typically bounded by computation time;
the delay elements enable reduction of critical path and faster
computation. However, molecular implementations of delay
elements require inherently slow transfer reactions; the speed of
molecular systems is bounded by the communication bound as
opposed to the computation bound. The computations in molec-
ular systems are inherently highly parallel unlike in electronic
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Fig. 20. Simulation results for the DNA implementation of the system shown in Figure 17.

TABLE III
COMPARISON BETWEEN MOLECULAR (DNA) AND ELECTRONICS (SILICON) COMPUTING SYSTEMS

systems where parallelism requires significant increase in hard-
ware resources. Finally the electronic circuits are highly inte-
grated while the molecular systems are not suitable for highly
integrated implementations. DNA and electronic systems also
differ fundamentally with respect to storage properties. DNA
systems can hold their concentrations indefinitely while the
charge or stored value in an electronic system can leak and
needs to be refreshed periodically.

VII. DISCUSSION AND CONCLUDING REMARKS

This paper presented methodologies for implementing
continuous-time, discrete-time and digital processing with
molecular reactions. Several examples are presented to illus-
trate the approaches presented in the paper.

Although pertaining to biology, the contributions of this
paper are neither experimental nor empirical; rather they are
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constructive and conceptual. We design robust digital logic
with molecular reactions. For the molecular digital systems, our
designs do not depend on specific reaction rates; the computa-
tion is accurate for a wide range of rates. This is crucial for
mapping the design to DNA substrates.

Intense efforts by the synthetic biology community have been
devoted to the implementation of computation and logical func-
tions with genetic regulatory elements [46]–[50]. For example
design of robust logical circuits using chemically wired cells
have been presented in [41] for single logic gates. Also genetic
circuits consisting of multi-layer logical gates have been imple-
mented in single cell in [51]. Yet, progress seems to have stalled
at the complexity level of circuits with perhaps 7–15 compo-
nents. In fact, in vivo engineering of such circuits is full of
experimental difficulties. In contrast, in vitro molecular com-
putation with DNA strand displacement is following a Moore’s
Law-like trajectory in the scaling of its complexity. Thus, due
to their complexity, systems presented in this paper are more
likely to be physically realizable in vitro than in vivo.

The impetus of the field is not computation per se; chemi-
cal systems will never be useful for number crunching. Rather
the field aims for the design of custom, embedded biological
“sensors” and “controllers” – viruses and bacteria that are engi-
neered to perform useful tasks in situ, such as cancer detection
and drug therapy. Exciting work in this vein includes [52],–[55].

One should notice that there is quantization error in the ADC
component. This is similar to the quantization error for other
types of ADC usually used in digital signal processing systems
[56]. The error can decrease the accuracy of system. The quan-
tization error can be reduced by increasing the ADC resolution
and, consequently, increasing the number of bits of ADC and
DAC components.

In future work, we will perform more detailed studies of
the characteristics of biomolecular continuous-time, discrete-
time and digital processing systems including noise analysis.
For instance, we will study how the resolution correlates with
changing molecular concentrations and how robust the designs
are to parametric variations. Also, we will develop faster imple-
mentations. The main bottleneck in current implementations
has been speed. Unlike in electronic systems, where the speed
is limited by changes in electric charge, the speed in molecu-
lar systems is limited by changes in molecular concentrations,
which are inherently slow.

We will investigate new scheduling approaches where multi-
ple computations are mapped into different phases of transfer.
Reducing currently achievable sample periods from hundreds
of hours to a few hours, or even a few minutes, will enable
experimental demonstration of some example signal processing
functions using DNA.
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