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Abstract—Stochastic logic performs computation on data rep-
resented by random bit streams. The representation allows
complex arithmetic to be performed with very simple logic, but
it suffers from high latency and poor precision. Furthermore,
the results are always somewhat inaccurate due to random
fluctuations. The random or pseudorandom sources required
to generate the representation are costly, consuming a majority
of the circuit area (and diminishing the overall gains in area).
In this paper, we show that randomness is not a requirement
for this computational paradigm. If properly structured, the
same arithmetical constructs can operate on deterministic bit
streams, with the data represented uniformly by the fraction
of 1’s versus 0’s. This paper presents three approaches for the
computation: relatively prime stream lengths, rotation, and clock
division. The three methods are evaluated on a collection of
arithmetical functions. Unlike stochastic methods, all three of our
deterministic methods produce completely accurate results. The
cost of generating the deterministic streams is a small fraction
of the cost of generating streams from random/pseudorandom
sources. Most importantly, the latency is reduced by a factor of
1
2n , where n is the equivalent number of bits of precision.

I. INTRODUCTION

In the paradigm of stochastic computation, digital logic is
used to perform computation on random bit streams, where
numbers are represented by the probability of observing a
one [1], [2], [3], [4], [5]. The benefit of such a stochastic
representation is that complex operations can be performed
with very simple logic. For instance, multiplication can be
performed with a single AND gate and scaled addition can
be performed with a single multiplexer unit. One obvious
drawback is that the computation has very high latency, due to
the length of the bit streams. Another is that the computation
suffers from errors due to random fluctuations and correlations
between the streams. These effects worsen as the circuit depth
and the number of inputs increase [5]. A certain degree of
accuracy can be maintained by re-randomizing bit streams, but
this is an additional expense [6]. While the logic to perform the
computation is simple, generating random or pseudorandom
bit streams is costly. Indeed, in prior work, pseudorandom
constructs such as linear feedback shift registers (LFSRs)
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accounted for as much as 90% of the area of stochastic circuit
designs [3], [4]. This significantly diminishes the area benefits.

This paper suggests that randomness is not a requirement
for the paradigm. We show that the same computation can
be performed on deterministically generated bit streams. The
results are completely accurate, with no random fluctuations.
Without the requirement of randomness, bit streams can be
generated inexpensively. Most importantly, with our approach,
the latency is reduced by a factor of approximately 1

2n , where n
is the equivalent number of bits of precision. (For example, for
the equivalent of 10 bits of precision, the bit stream length is
reduced from 220 to only 210.) As with stochastic computation,
all bits in our deterministic streams are weighted equally.
Accordingly, our deterministic circuits display the same high
degree of tolerance to soft errors.

This paper is structured as follows: Section II presents back-
ground information on stochastic computing. Section III gives
an intuitive view of why stochastic computation works. Section
IV shows how computation can be performed on deterministic
bit streams in a manner analogous to computation on stochastic
bit streams. Section V presents three deterministic methods
and describes their circuit implementations. Section VI com-
pares the hardware complexity and latency of stochastic and
deterministic methods.

II. BACKGROUND ON STOCHASTIC LOGIC

In a paradigm first advocated by Gaines, logical compu-
tation is performed on stochastic bit streams [1]. There are
two possible coding formats: a unipolar format and a bipolar
format [1]. These two formats are conceptually similar and
can coexist in a single system. In the unipolar coding format, a
real number x in the unit interval (i.e., 0≤ x≤ 1) corresponds
to a bit stream X(t) of length L, where t = 1,2, ...,L. The
probability that each bit in the stream is one is P(X = 1) = x.
For example, the value x = 0.3 could be represented by a
random stream of bits such as 0100010100, where 30% of
the bits are one and the remainder are zero. In the bipolar
coding format, the range of a real number x is extended to
−1≤ x≤ 1. The probability that each bit in the stream is one
is P(X = 1) = x+1

2 . An advantage of the bipolar format is that
it can deal with negative numbers directly. However, given the
same bit stream length, L, the precision of the unipolar format
is twice that of the bipolar format. For what follows, unless
stated otherwise, our examples will use the unipolar format.

The synthesis strategy with stochastic logic is to cast logical
computations as arithmetic operations in terms of probabilities.
Two simple arithmetic operations – multiplication and scaled
addition – are illustrated in Figure 1.

































 















































 

















Fig. 1: Stochastic implementation of arithmetic operations: (a) Multi-
plication; (b) Scaled addition.

• Multiplication. Consider a two-input AND gate, shown
in Figure 1(a). Suppose that its inputs are two independent
bit streams X1 and X2. Its output is a bit stream Y , where

y = P(Y = 1) = P(X1 = 1 and X2 = 1)
= P(X1 = 1)P(X2 = 1) = x1x2.

Thus, the AND gate computes the product of the two
input probability values.

• Scaled Addition. Consider a two-input multiplexer,
shown in Figure 1(b). Suppose that its inputs are two
independent stochastic bit streams X1 and X2 and its
selecting input is a stochastic bit stream S. Its output is
a bit stream Y , where

y = P(Y = 1)
= P(S = 1)P(X1 = 1)+P(S = 0)P(X2 = 1)
= sx1 +(1− s)x2.

(Note that throughout the paper, multiplication and addi-
tion represent arithmetic operations, not Boolean AND
and OR.) Thus, the multiplexer computes the scaled
addition of the two input probability values.

III. INTUITIVE VIEW OF STOCHASTIC COMPUTATION

Before presenting our methods, we present two intuitive
explanations of why stochastic computation works: computing
on averages and discrete convolution.

A. Taking a Look at the Average

Stochastic computation is framed as computation on proba-
bilities. This is, of course, an abstraction of what is happening
at the bit level. Computation is happening in a statistical
sense on the average number of ones and zeros. Because the
probability represented by a bit stream is equivalent to its
expected value, we can instead view bit streams by the number
of ones and zeros we would expect to see on average. For
example, if we say that bit stream A represents a probability
pA = 2/3, this is equivalent to saying that we expect to see
two ones for every three bits. In general, the number formats
(unipolar, bipolar, etc.) are all defined in terms of the average
number of ones and zeros. For example, the probability p of
unipolar and bipolar bit streams are given by,

puni =
N1

N1 +N0
pbi =

N1−N0

N1 +N0
, (1)

where N1 and N0 are the average number of ones and zeros.
Therefore, by showing how each logic gate manipulates the
average number of ones and zeros, the operation of the logic
gate can be expressed independently of any particular number
format.

Using two independent bit streams in a unipolar format, an
AND gate multiplies their probabilities. Labeling the input bit
streams as A and B, the probability of the output bit stream C
is given by,

pC = pA pB =
NC1

NC1 +NC0
=

NA1

NA1 +NA0

NB1

NB1 +NB0
(2)

where NC1 and NC0 represent the average number of ones and
zeros in bit stream C. By multiplying out the right side of
Equation 2 and organizing the terms,

pC =
NA1NB1

NA1NB1 +(NA1NB0 +NA0NB1 +NA0NB0)
(3)

it can be seen that the fraction has the same form as the
unipolar probability of Equation 1. Therefore, the average
number of ones and zeros in bit stream C can be written in
terms of the average number of ones and zeros in bit streams
A and B,

NC1 = NA1NB1

NC0 = NA1NB0 +NA0NB1 +NA0NB0
(4)

Denote the average number of ones and zeros in a bit stream
X as the uniform number NX1{1}+NX0{0}. Distributing the
AND operation (denoted by ∧) gives the same result, as
Equation 4:

NC1{1}+NC0{0}=
(NA1{1}+NA0{0})∧ (NB1{1}+NB0{0}) =

NA1NB1{1}+(NA1NB0 +NA0NB1 +NA0NB0){0}
(5)

This shows that, by representing probabilities with indepen-
dent random bit streams, an AND gate operates on average
proportions of ones and zeros. In general, for any arbitrary
logic gate with independent random bit streams A and B as
inputs, the proportion of bits at the output is given by,

NC1{1}+NC0{0}=
(NA1{1}+NA0{0})�(NB1{1}+NB0{0})

(6)

where the � symbol is replaced with any Boolean opera-
tor. This demonstrates that independent random bit streams
passively maintain the property that the average bits of bit
stream A are operated on with the average bits of bit stream
B. Independence guarantees that each outcome of a bit stream
(one or zero) will “see” the average number of ones and
zeros of another bit stream. (Of course, if the bit streams
are correlated, the output does not simply depend on the
proportions of the bit streams in a straightforward way.) We
conclude this section with two examples demonstrating the
application of Equation 6.



Example 1 Assume we have two independent bit streams
A and B with unipolar probabilities pA = 1/3 and pB = 2/3.
This means on average we will observe a single one for every
three bits of A and two ones every three bits of B. If these bit
streams are used as inputs to an AND gate, the average output
and probability are given by,

NC1{1}+NC0{0}=
(1{1}+2{0})∧ (2{1}+1{0}) =

2{1∧1}+1{1∧0}+4{0∧1}+2{0∧0}=
2{1}+7{0}

⇒ pC =
2

2+7
=

2
9

Example 2 Assume we have two independent bit streams A
and B with bipolar probabilities pA = 4/6 and pB = -3/5. This
means on average we will observe five ones for every six
bits of A and a single one for every five bits of B. If these
bit streams are used as inputs to an XNOR gate, the average
output and probability are given by,

NC1{1}+NC0{0}=
(5{1}+1{0})≡ (1{1}+4{0}) =

5{1≡ 1}+20{1≡ 0}+1{0≡ 1}+4{0≡ 0}=
9{1}+21{0}

⇒ pC =
9−21

30
=−12

30
We can see from Examples 1 and 2 that we can find the

output of a stochastic logic gate by taking an average view of
the random bit streams and applying Equation 6.

B. Insight: Convolution

In basic terms, convolution consists of three operations:
slide, multiply, and sum. For bit streams X and Y , each with
L bits, the discrete convolution operation is

L

∑
i=1

L

∑
j=1

XiYj (7)

The previous sections showed an AND gate multiplies
proportions if each bit of one bit stream “sees” every bit of
the other bit stream. Intuitively, this is equivalent to sliding
one operand past the other.

Example 3 By sliding the following five-bit operands past
each other,

11100 

01100 

Fig. 2: Sliding operand analogy

each bit of the top operand sees two ones and three zeros and
each bit of the bottom operand sees three ones and two zeros.
In this way, a stochastic representation maintains the sliding
of average bit streams.

A significant attribute of the stochastic representation is that
it is a uniform encoding. Uniform numbers have the interesting
property that the order of elements does not matter (i.e., the
values are not weighted). This means partial products can

be summed by simple concatenation. The following example
demonstrates how this contrasts with binary multiplication.

Example 4 To multiply binary numbers, we perform bitwise
multiplication and sum the weighted partial products. It takes
two operations, bitwise multiply and sum, to go from binary
inputs to a binary output. In contrast, to multiply uniform
numbers the partial products simply need to be concatenated.
By performing bitwise multiplications sequentially in time,
concatenation is performed passively.

10 
10 

10 
00 sum concatenate 

100 1000 

!"

10 
10 

10 
00 

!"
Binary Uniform 

Fig. 3: Multiplication of binary and uniform numbers

When using a uniform encoding, we do not need to sum
the output of a logic gate in a particular order to get back the
same representation as the inputs. We have “proportions in”,
“proportions out”. In contrast, a weighted encoding requires
additional circuitry to add the partial products in the correct
manner.

This is why the arithmetic logic of a stochastic representa-
tion is so simple, the slide and sum operations of convolution
are passively provided by the representation. Convolution
of proportions only requires logic operations that result in
bitwise (or element-wise) multiplication of the particular num-
ber format. Looking back at Example 2, we can think of
the bipolar format as containing positive entities (‘1’s) and
negative entities (‘0’s). Multiplication of entities that can be
both positive and negative is defined by the following truth
tables: TABLES 1 & 2

Truth tables for multiplication of positive (1) and negative (0) entities

a b a×b
- - +
- + -
+ - -
+ + +

a b a≡ b
0 0 1
0 1 0
1 0 0
1 1 1

where the truth table on the right is identical to the truth table
implemented by an XNOR gate. Therefore, by using the logic
gate that multiplies the format of the entities, the average bit
streams are convolved. This is why, in particular, multiplica-
tion and scaled addition are extremely simple operations with
stochastic logic.

These insights lead us to ask: if the process can be described
as multiplying every bit of one proportion by every bit of
another proportion, or equivalently, by sliding and multiplying
deterministic numbers, is randomness actually a requirement?
Can the cost and latency be reduced if one approaches the
problem deterministically?

IV. DETERMINISTIC INTERPRETATION

A. A Link Between Representations
Equation 6 gives us a link between independent stochastic

bit streams and deterministic bit streams. We can substitute
independent stochastic bit streams for deterministic bit streams
if Equation 6 holds, that is, if we maintain the property that
proportion A sees every bit of proportion B.



Example 5 Two registers contain deterministic unipolar
proportions pA = 1/3 and pB = 2/3. How can we generate bit
streams such that a single AND gate performs multiplication?

From Equation 6 we know each bit of pA must be ANDed
with each bit of pB. Therefore, each bit stream should be a
redundant encoding that maintains Equation 6. One method,
shown in a later section, is to clock divide one proportion
while the other repeats:

pA = 1/3 = 100→ 100 100 100
pB = 2/3 = 110→ 111 111 000

A 

B 

C 

100 100 100 

111 111 000 

100 100 000 

pC = pA pB = 2/9

Example 6 Three registers contain deterministic unipolar
proportions pA = 1/3, pB = 2/3, and pS = 2/3. How can we
generate bit streams such that a two-input multiplexer performs
scaled addition?

A multiplexer performs the logical operation (S∧A)∨(¬S∧
B), where ∧ is AND, ∨ is OR, and ¬ is NOT. It can be
constructed using two AND gates, an inverter, and an OR gate.
Because the circuit simply selects the output of either AND
gate, bit streams A and B do not need to be independent from
each other. Only bit stream S is required to be independent
from A and B. Clock dividing S while A and B repeat performs
scaled addition:

pA = 1/3 = 100→ 100 100 100
pB = 2/3 = 110→ 110 110 110
pS = 2/3 = 110→ 111 111 000

B 

A 
100 100 100 

110 110 110 

S 
111 111 000 

100 100 110 
1 

0 

C 

pC = pS pA +(1− pS)pB = 2/9+ 2/9 = 4/9

In these examples, Equation 6 is maintained on deterministic
bit streams. (For convenience, we will use “independent” to
describe both random and deterministic bit streams that obey
Equation 6.)

B. Comparing the Representations

A stochastic representation passively maintains the property
that each bit of one proportion sees every bit of the other
proportion, but this property occurs on average, meaning the
bit streams have to be much longer than the resolution they
represent due to random fluctuations. Equation 8 defines the
bit stream length N required to estimate the average proportion
within an error margin ε [7].

N >
p(1− p)

ε2 (8)

To represent a value within a binary resolution 1/2n, the error
margin ε must equal 1/2n+1. Therefore, the bit stream must be

greater than 22n uniform bits long, as the p(1− p) term is at
most equal to 2−2 [7]. This means the length of a stochastic
bit stream increases exponentially with the desired resolution.
This results in enormously long bit streams. For example, if we
want to find the proportion of a random bit stream with 10-bit
resolution (1/210), we’ll have to observe at least 220 bits. This
is over a thousand times longer than the bit stream required
by a deterministic uniform representation.

The computations also suffer from some level of correlation
between bit streams. This can cause the results to bias away
from the correct answer. For these reasons, stochastic logic
has only been used to perform approximate computations.

Another related issue is that the LFSRs must be at least
as long as the desired resolution in order to produce bit
streams that are sufficiently random. A “Randomizer Unit”,
described in [4], uses a comparator and LFSR to convert
a binary encoded number into a random bit stream. Each
independent random bit stream requires its own generator.
Therefore, circuits requiring i independent inputs with n-bit
resolution need i LFSRs with length L approximately equal
to 2n. This results in the LFSRs dominating a majority of the
circuit area.

By using deterministic bit streams, we avoid all problems
associated with randomness while retaining all the computa-
tional benefits associated with a stochastic representation. For
instance, the deterministic representation retains all the fault-
tolerance properties attributed to a stochastic representation
because it also uses a uniform encoding. To represent a
value with resolution 1/2n in a deterministic representation,
the bit stream must be 2n bits long. The computations are also
completely accurate; they do not suffer from correlation.

To utilize a deterministic representation, bit stream genera-
tors must explicitly maintain Equation 6. The next section dis-
cusses three methods for generating independent deterministic
bit streams and gives their circuit implementations. Without
the requirement of randomness, the hardware cost of the bit
stream generators is small.

V. DETERMINISTIC METHODS

Each method is implemented using a bit stream generator
formed by a group or interconnection of converter modules,
as shown in Figure 4. Each converter module uses the general
circuit topology of Figure 5. The modules are similar to the
“Randomizer Unit”; the difference is that the LFSR is replaced
by a deterministic number source. The generator takes in
operands and generates bit streams such that:

G(C0,C1, ...,Ci−1)→(
C0{1}+(2n0 −C0){0}

)
�
(
C1{1}+(2n1 −C1){0}

)
�

... �
(
Ci−1{1}+(2ni−1 −Ci−1){0}

) (9)

where i is total number of converter modules that make up
the generator, ni is the binary resolution of the ith individual
module, Ci is an operand defining the proportion (or encoded
value) of the bit stream, and each � can be any arbitrary
logical operator.
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Fig. 4: Deterministic bit stream generator
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C 
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Fig. 5: Converter module

Conceptually, we can view the converter module circuit of
Figure 5 as selecting bits from a collection or array a (see
Figure 6). The binary constant C determines the contents of
the array: any elements less than index C contain a one,
otherwise they contain a zero. In this way, C defines a uniform
proportion of ones and zeros: C→C{1}+(2n−C){0}. Using
the array analogy, we can represent the proportion as a
sequence a0,a1, ...a2n−1. The number Q, determined by the
deterministic number source, points to different indices of
the array. Each clock cycle, the element that Q points to is
chosen as the next output. To ensure the generated bit stream
has the same proportion of ones and zeros (i.e., represents
the number C), Q must point to each index an equal number
of times (within some period). In other words, the input C
defines the proportion or collection of bits from which the bit
stream is uniformly generated. The sequence generated by the
number source is used to maintain the independence between
bit streams. This requires the converter modules to have certain
properties relative to one another. Depending on the method
used, these properties manifest into either interconnections
between modules or as differences in certain parameters.

1 1 0 0 
Array 

a 
0 1 2 3 

Q C 

G = a[Q] 

Fig. 6: Analogy of the circuit operation of Figure 5

The methods maintain independence by using relatively
prime bit lengths, rotation, or clock division. For each method,
the hardware complexity of the circuit implementation is
given. The computation time of each method is the same.

A. Relatively Prime Bit Lengths

The relatively prime method maintains independence by
using proportions that have relatively prime lengths (i.e., the
ranges [0, Ri) between converter modules are relatively prime).
Figure 7 demonstrates the method with two bit streams A and
B, one with operand length four and the other with operand
length three. The bit streams are shown in array notation to
show the position of each bit in time.

a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3 

b0 b1 b2 b0 b1 b2 b0 b1 b2 b0 b1 b2  

 Fig. 7: Two bit streams generated by the relatively prime method

Independence between bit streams is maintained because the
remainder, or overlap between proportions, always results in
a new rotation (or initial phase) of a proportion. Intuitively,
this occurs because the bit lengths share no common factors.
This results in every bit of each operand seeing every bit of
the other operand. For example, a0 sees b0, b1, and b2; b0
sees a0, a3, a2, and a1; and so on. Using two bit streams with
relatively prime bit lengths j and k, the output of a logic gate
repeats with period jk. This means with multi-level circuits the
output of the logic gates will also be relatively prime. Figure
8 demonstrates this with a two level circuit.

A 

B 

C 
[0, 32) 

[0, 899) 
[0, 29) 

[0, 31) 
[0, 28768) 

Fig. 8: Arbitrary multi-level circuit with streams generated by the relatively prime method

Therefore, by using relatively prime bit lengths up front,
we can guarantee that Equation 6 is maintained for subsequent
levels. This allows for the same arithmetic logic as a stochastic
representation.

A circuit implementation of the relatively prime method is
shown in Figure 9. Each converter module uses a counter as a
number source for iterating through each bit of the proportion.
The state of the counter Qi is compared with the proportion
constant Ci. The relatively prime counter ranges Ri between
modules maintain independence; there are no interconnections
between modules. In terms of general circuit components, the
circuit uses i counters and i comparators, where i is the number
of generated independent bit streams. Assuming the max range
is a binary resolution 2n and all modules are close to this value
(i.e., 256, 255, 253, 251...), the circuit contains approximately
i n-bit counters and i n-bit comparators.

A limitation of this method is that it requires the inputs
to have relatively prime lengths. In this paper we focus on a
digital representation of data, but the relatively prime method
may also work well with an analog interpretation of the bit
streams, where the value is encoded as the fraction of time the
signal is high and the independence property is maintained by
using relatively prime frequencies. An analog implementation
can also benefit from a simplified clock distribution circuit [8].
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Fig. 9: Circuit implementation of the relatively prime method

B. Rotation
In contrast to the relatively prime method, the rotation

method allows proportions of arbitrary length to be used. In-
stead of relying on relatively prime bit lengths, the proportions
are explicitly rotated. This requires the sequence generated by
the number source to change after it iterates through its entire
range. For example, a simple way to generate a bit stream
where the proportion rotates in time is to inhibit or stall a
counter every 2n clock cycles (where n is the length of the
counter). Figure 10 demonstrates this method with two bit
streams, both with proportions of length four.

a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3 

b0 b1 b2 b3 b3 b0 b1 b2 b2 b3 b0 b1 b1 b2 b3 b0 

 Fig. 10: Two bit streams generated by the rotation method

By rotating bit stream B’s proportion, it is straightforward
to see that each bit of one bit stream sees the other bit stream’s
proportion. Assuming all proportions have the same length, we
can extend the two bit stream example to work with multiple
bit streams by inhibiting counters at powers of the operand
length. This allows the operands to rotate relative to longer
bit streams. For example, consider the circuit in Figure 11.
Bit stream A does not rotate, bit stream B rotates every 2n

clock cycles, and bit stream C rotates every 22n clock cycles.
The resultant bit stream AB of the AND gate repeats every 22n

clock cycles and bit stream C rotates every 22n bits. Therefore
bit stream C rotates relative to the bit stream AB, maintaining
the rotation property for multi-level circuits.

A 

B 

C 
rotate: 22n  

repeat: 22n  
repeat: 2n  

rotate: 2n  
repeat: 23n  

Fig. 11: Arbitrary multi-level circuit with bit streams generated by the rotation method

A circuit implementation follows from the previous exam-
ple. We can generate any number of independent bit streams as
long as the counter of every ith converter module is inhibited
every 2ni clock cycles. This can be managed by adding
additional counters between each module. These counters
control the phase of each converter module and maintain the
property that each converter module rotates relative to the other
modules. Using n-bit binary counters and comparators, the
circuit requires i n-bit comparators and 2i−1 n-bit counters.
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G0 

C0 

[0, 2n)!Cntr 
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Comp 
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C1 

[0, 2n)!Cntr 
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C2 

[0, 2n)!Cntr 

Q2 

CLK [0, 2n)!Cntr [0, 2n)!Cntr . . . .  

. . . .  

Inhibit Inhibit 

Fig. 12: Circuit implementation of the rotation method

The advantage of using rotation as a method for generating
independent bit streams is that we can use operands with the
same resolution, but this requires more basic components than
the relatively prime method.

C. Clock Division

The clock division method works by clock dividing
operands. Similar to the rotation method, it also allows pro-
portions to have arbitrary lengths. This method was first seen
in Example 5. Figure 13 demonstrates this method with two
bit streams, both with proportions of length four. Bit stream
B is clock divided by the length of bit stream A’s proportion.

a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3 

b0 b0 b0 b0 b1 b1 b1 b1 b2 b2 b2 b2 b3 b3 b3 b3 

 Fig. 13: Two bit streams generated by the clock division method

Assuming all operands have the same length, we can
generate an arbitrary number of independent bit streams as
long as the counter of every ith converter module increments
every 2ni clock cycles. This can be implemented in circuit form
by simply chaining the converter module counters together,
as shown in Figure 14. Using n-bit binary counters and
comparators, the circuit requires i n-bit comparators and i n-
bit counters. This means the clock division method allows
operands of the same length to be used with approximately
the same hardware complexity as the relatively prime method.
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Fig. 14: Circuit implementation of the clock division method

VI. EXPERIMENTS

In this section we compare the hardware complexity and la-
tency of the deterministic methods with conventional stochas-
tic methods. We also compare implementations of Bernstein
polynomials, a general method for synthesizing arbitrary func-
tions, for both precise and approximate computations.



A. Generator Comparison

Perfectly precise computations require the output resolu-
tion to be at least equal to the product of the independent
input resolutions. This is demonstrated in Equation 6, where
to precisely compute the output of a logic gate given two
proportions, each bit of one proportion must be operated on
with every bit of the other proportion. For example, with
proportions of size n and m, the precise output contains nm
bits.

Assuming each independent input i has the same resolution
1/2nin , the output resolution is given by 1/2nout = 1/2nini. As
discussed in Section IV, a stochastic representation requires
bit streams that are 22n bits long to represent a value with
1/2n precision. Also, to ensure the generated bit streams are
sufficiently random and independent, each LFSR must have
at least as many states as the required output bit stream.
Therefore, to compute with perfect precision each LFSR must
have at least length 2nini. In this way, the precision of the
computation is determined by LFSR length.

With the deterministic methods, the resolution n of each
input i is determined by the length of its converter module
counter. The output resolution is simply the product of the
counter ranges. For example, with the clock division method,
each converter module counter is connected in series. With i
inputs each with resolution n, the series connection forms a
large counter with 2ni states. This shows that output resolution
is not determined by the length of each individual number
source, but by their concatenation. This allows for a large
reduction in circuit area compared to stochastic methods.

To compare the area of the circuits in terms of gates, we
assume three gates for every cell of a comparator and six gates
for each flip-flop of a counter or LFSR (this is similar to the
hardware complexity used in [9] in terms of fanin-two NAND
gates). For i inputs with n-bit binary resolution, the gate count
for each basic component is given by:

TABLE III
Gate count for basic components

Component Gate Count
Comparator 3n

Counter 6n
LFSR 12ni

Using the basic component totals for each deterministic
method from Section V and the fact that each “Randomizer
Unit” needs one comparator and one LFSR per input, the total
gate count and bit stream length for precise computations in
terms of independent inputs i with resolution n is given by
Table IV.

TABLE IV
Gate count and latency of stochastic and deterministic bit stream generators

Representation Method Gate Count Latency
Stochastic Randomizer 12ni2 +3ni 22ni

Deterministic
Rel. Prime 9ni

2niRotation 15ni−6n
Clock Div. 9ni

The equations of Table IV show that the deterministic
methods use less area and compute to the same precision in
exponentially less time. In addition, because the computations

do not suffer from correlation, they are completely accurate.
Table V compares the gate count and latency of the conven-
tional stochastic method with the clock division method using
numerical values of i and n.

TABLE V
Numerical comparison of Randomizer and clock division stream generators

i n Randomizer Clock Div. determ.product
stoch.productGates Latency Gates Latency

2
4-bit 216 216 72 28 1.30×10−3

8-bit 432 232 144 216 5.09×10−6

3
4-bit 468 224 108 212 5.63×10−5

8-bit 936 248 216 224 1.38×10−8

4
4-bit 816 232 144 216 2.69×10−6

8-bit 1632 264 288 232 4.11×10−11

5
4-bit 1260 240 180 220 1.36×10−7

8-bit 2520 280 360 240 1.30×10−13

For the given number of inputs i and resolution n, the
clock divide method has a 66-85% reduction in area and an
exponential decrease in computation time. The deterministic
area-delay product is orders of magnitude smaller than the
stochastic area-delay product.

B. Bernstein Polynomial Implementation
In this subsection we compare the implementation of Bern-

stein polynomials using stochastic and deterministic methods.
A Bernstein polynomial can be used to synthesize power-
form polynomial functions or approximate non-polynomial
functions that map values from the unit interval to values in
the unit interval, examples include g(x) = 6x3−8x2 +3x and
f (x) = x0.45. This arithmetic circuit can be implemented using
an adder block and multiplexer block, as shown in Figure 15.
Bit streams zi form the coefficients of the Bernstein polynomial
and bit streams xi form the input x. Additional details can be
found in [10].
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Fig. 15: Circuit implementation of Bernstein polynomial with output counter

For both representations, the adder block is formed by
a d-bit adder made up of 2d gates and a (d + 1)-channel
multiplexer made with 3d gates. Each method needs the
same number of bit streams and therefore requires 2d + 1
comparators. Each z bit stream must be independent from the
input x bit streams, but they do not have to be independent
from each other. This is because only one z bit stream is
selected at a time. Therefore, Equation 6 does not have to be
maintained between the coefficient bit streams and the same
number source can be used for all z bit streams. Both methods
require d +1 number sources.

Using the above basic component counts and including the
output counter, Table VI characterizes the hardware complex-
ity and latency for implementing a Bernstein polynomial of
degree d with n-bit binary input resolution.



TABLE VI
Bernstein polynomial implementation using stochastic and deterministic methods

Bernstein Polynomial (degree d, n-bit input resolution)
Generator Gate Count Latency

Randomizer 12nd2 +42nd +27n+5d 22n(d+1)

Rel. Prime 18nd +15n+5d
2n(d+1)Rotation 24nd +15n+5d

Clock Div. 18nd +15n+5d

Table VII compares the clock division method to the
stochastic method with numerical values of degree d and
binary input resolution n.

TABLE VII
Numerical comparison of Randomizer and clock division implementation of Bernstein

polynomials with degree d and input resolution n

d n Randomizer Clock Div. determ.product
stoch.productGates Latency Gates Latency

2 4-bit 646 224 214 212 8.09×10−5

3 4-bit 1059 232 291 216 4.19×10−6

4 4-bit 1568 240 368 220 2.24×10−7

5 4-bit 2173 248 445 224 1.22×10−8

With 4-bit binary inputs, the clock divide method provides
66-79% reduction in circuit area over the given range of
polynomial degrees. Again, the latency of the deterministic
representation is exponentially less than the stochastic repre-
sentation. The area-delay product of the clock divide method
for computing Bernstein polynomials is orders of magnitude
less than the stochastic method.

If a lower output resolution is desired to reduce the bit
stream lengths, the resolution of the inputs can be relaxed:

nin = d
nout

i
e= d nout

d +1
e (10)

In general, stochastic computation uses imprecise output
resolutions to avoid long delays and reduce the size of the
LFSRs. By keeping the output resolution fixed, the LFSR
lengths are linearly proportional to d.

Using an nout -bit output resolution and relaxing the inputs,
the hardware complexity for the stochastic method with a
constant output resolution is given by 12noutd + 24nout +
6d nout

d+1ed + 3d nout
d+1e+ 5d. Table VIII compares the methods

with constant output resolution (where the inputs of the
deterministic methods are relaxed according to Equation 10).

TABLE VIII
Numerical comparison of Randomizer and clock division implementation of Bernstein

polynomials with degree d and constant output resolution nout

d nout
Randomizer Clock Div. determ.product

stoch.productGates Latency Gates Latency
3 8-bit 537 216 153 28 1.11×10−3

4 10-bit 794 220 194 210 2.39×10−4

5 12-bit 1099 224 235 212 5.22×10−5

6 14-bit 1452 228 276 214 1.16×10−5

7 16-bit 1853 232 317 216 2.61×10−6

The results of Table VIII show the clock divide method
provides a 71 to 82% reduction in area for practical imple-
mentations of a Bernstein polynomial with constant output
resolution.

VII. CONCLUSION

There has been widespread interest in the idea of stochas-
tic logic in recent years. We point to [5] for a survey of

work in the area. While numerous papers have advocated
the advantages, the narrative has never been compelling.
Yes, the paradigm permits complex arithmetic operations to
be performed with remarkably simple logic, but the logic
to generate pseudorandom bit streams is costly, essentially
offsetting the benefit. The long latency, poor precision, and
random fluctuations are near disastrous for most applications.

While it is easy conceptually to understand how stochastic
computation works, randomness is costly. This paper argues
that randomness is not necessary. Instead of relying upon
statistical sampling to operate on bit streams, we can explic-
itly “convolve” them: we slide one operand past the other,
performing bitwise operations. We argue that the logic to
perform this convolution is less costly than that to generate
pseudorandom bit streams. More importantly, we can use
much shorter bit streams to achieve the same accuracy as with
statistical sampling through randomness. Indeed, the results of
our computation are predictable and completely accurate for
all input values.

Of course, compared to a binary radix representation, our
deterministic representation is still not very compact. With M
bits, a binary radix representation can represent 2M distinct
numbers. To represent real numbers with a resolution of 2−M ,
i.e., numbers of the form a

2M for integers a between 0 and
2M , we require a stream of 2M bits. In contrast, a stochastic
representation requires 22M bits to achieve the same precision!

We conclude that there is no clear reason to compute on
stochastic bit streams. Even when randomness is free, say
harvested from thermal noise or some other physical source,
stochastic computing entails very high latency. In contrast,
computation on deterministic uniform bit streams is less costly,
has much lower latency, and is completely accurate.
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