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Homework # 3

Due April 24, 2015

1. Logical and Iterative Computation with Molecular Reactions

In the last homework, you implemented some simple functions with molecular

reactions. In this homework, you’ll implement some more complicated ones.

(a) XOR function

Design a set of DNA reactions that computes the exclusive-OR function

of two inputs X and Y , where a large concentration of the type represents

logical 1 and a small (or near zero) concentration of the type represents

logical 0. Provide simulation results to validate your solution.

(b) Euclid’s Algorithm

Euclid’s algorithm is an efficient method for computing the greatest com-

mon divisor (GCD) of two integers, also known as the greatest common

factor (GCF) or highest common factor (HCF). It is named after the Greek

mathematician Euclid, who described it in Books VII and X of his Ele-

ments.

In its simplest form, Euclid’s algorithm starts with a pair of positive

integers and forms a new pair that consists of the smaller number and the

difference between the larger and smaller numbers. The process repeats

until the numbers are equal. That number then is the greatest common

divisor of the original pair.

Design a set of molecular reactions that implements the procedure.

Demonstrate that your code works for x = 66 and y = 30.

(c) Collatz Procedure

The Collatz conjecture is a famous open problem in mathematics, proposed

by Lothar Collatz in 1937. Consider the following iterative procedure. For

any positive integer x,

• if x = 1 stop;
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• else if x is odd, let x = 3x + 1;

• else let x = x/2.

The conjecture is that, starting with any positive integer x, the procedure

always terminates with x = 1. For instance, starting with x = 5, one

follows the sequence 16, 8, 4, 2 and 1. Starting from x = 27, one follows

the sequence 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, . . . (keep going,

you’ll see that you eventually hit one.)

Proving this is evidently difficult. Paul Erdös said about the con-

jecture: “Mathematics is not yet ready for such problems”. He offered a

monetary reward of $500 for its solution.

You are not asked to prove the Collatz conjecture on this homework.

Rather you are asked to design a set of molecular reactions that implements

the procedure. The input to the system is a quantity of a type X; the

system should iterate through the Collatz sequence until it hits one.

Demonstrate that your code works for x = 27.

2. XOR Function with Logic Gates

The exclusive-or operation is at the core of all encoding and decoding func-

tions. In class, we discussed at length circuits for computing this operation.

We discussed a scheme for implementing XOR(x1, . . . , xn) with

d[2.5(n− 1)e

AND/OR gates, with arbitrary fan-in, and as many NOT gates as are needed.

We also discussed a lower bound for XOR(x1, . . . , xn) with

2n− 1

AND/OR gates, with arbitrary fan-in, and as many NOT gates as are needed.

As a function of n:

n d[2.5(n− 1)e 2n− 1

2 3 3

3 5 5

4 8 7

5 10 9

6 13 11
...

...
...
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We see that there is a gap, starting at n = 4: the best known circuit for

computing XOR(x1, x2, x3, x4) requires 8 AND/OR gates, while the strongest

known proof is for a lower bound of 7 AND/OR gates.

(a) Implementing XOR with AND gates

Recall that the Exclusive-OR (XOR) function is 1 if an odd number of the

inputs are 1, and 0 otherwise. Suppose that we have to build an circuit

that computes XOR with AND gates, OR gates, and inverters.

i. Draw a circuit to compute the XOR of 13 variables with the fewest

possible number of AND and OR gates gates, and as many inverters

as you want. (Solutions has 30 AND and OR gates.)

ii. Draw a circuit to compute the XOR of 15 variables with the fewest

possible number of AND and OR gates gates, and as many inverters

as you want. (Solutions has 35 AND and OR gates.)

iii. Draw a circuit to compute the XOR of 23 variables with the fewest

possible number of AND and OR gates gates, and as many inverters

as you want. (Solutions has 55 AND and OR gates.)

iv. Draw a circuit to compute the XOR of 27 variables with the fewest

possible number of AND and OR gates gates, and as many inverters

as you want. (Solutions has 65 AND and OR gates.)

(b) A Lower Bound (12.5 points)

Solve any one of the following for full points.

i. Write a computer program that verifies that no circuit with 7 AND/OR

gates computes the XOR of 4 variables. (You can limit the number of

configurations that it tries up to symmetries, e.g., permuting the vari-

ables. But you have to convince me that you have verified all distinct

configurations, up to such symmetries.)

ii. Write a program that verifies that no circuit with x AND/OR gates

computes the XOR up to y variable. (Bonus points if you can go

above x = 7, y = 4.)

iii. Improve the lower bound to d2.5n−1e. (I don’t know if this is true. In

addition to full points for this problem, I’ll give you an immediate

A in the course if you solve this.)

iv. Discuss the implementation of the XOR of n variables in terms of

CMOS transistors. What is the minimum number of transistors that

you require? Can you prove a lower bound (or prove that your con-

struct is optimal)?
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3. Circuits and Conditional Permutations

In class, we discussed conditional permutations. Consider

{x: (1 3 4 2 5), (1 4 5 2 3)}.

The first block of 5 numbers specifies the permutation that is taken if x = 1,

while the second block of 5 numbers specifies the permutation that is taken if

x = 0.

Let’s use * to denote the identity permutation. Consider the following sequence

of conditional permutations.

{x: (1 3 4 2 5), *}

{y: (1 4 5 2 3), *}

{x: (1 5 2 4 3), *}

{y: (1 3 2 5 4), *}

Note that the two permutations for x = 1 are inverses. The same is true for the

two permutations for y = 1. As you can verify, this sequence of permutations

implements the permutation (1 4 3 5 2) if x = 1 and y = 1. It implements

the identity permutation if either x = 0 or y = 0.

We interpret a sequence of permutations as follows: if the overall result is a

permutation – any permutation – then the operation corresponds to logical 1;

if the overall result is no permutation, then the operation corresponds to logical

0. Accordingly, this sequence implements xy i.e., the AND of x and y.

Now consider the following sequence.

{x: (1 3 4 2 5), *}

{y: (1 4 5 2 3), *}

{x: (1 5 2 4 3), *}

{y: (1 3 2 5 4), *}

{*: (1 2 5 3 4), (1 2 5 3 4)}

It is the same sequence as above, except that here we have appended the uncon-

ditional permutation (1 2 5 3 4) at the end. (Here “unconditional” means we

perform the same permutation regardless, so it is not conditional on the value

of a variable.) Note that the unconditional permutation is the inverse of the

permutation computed by the sequence above. Accordingly, this sequence im-

plements identity if x = 1 and y = 1, and it implements (1 2 5 3 4) otherwise.

So this sequence implements (xy)′, i.e., the NAND of x and y.
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In fact, we can sneak the unconditional permutation in with the last one, by

simply multiplying it in:

{x: (1 3 4 2 5), *}

{y: (1 4 5 2 3), *}

{x: (1 5 2 4 3), *}

{y: (1 4 2 3 5), (1 2 5 3 4)}

For what follows, define the following five permutations:

A = (1 4 3 5 2)

B = (1 4 5 2 3)

C = (1 3 4 2 5)

D = (1 2 4 5 3)

E = (1 4 2 3 5)

Now note that:

A = CBC’B’ ; A’ = BCB’C’

B = CDC’D’ ; B’ = DCD’C’

C = DED’E’ ; C’ = EDE’D’

D = EBE’B’ ; D’ = BEB’E’

E = DAD’A’ ; E’ = ADA’D’

Here X’ means the inverse of X. You will constantly be referring back to these

identities.

Example

Write a sequence of conditional permutations for

F(x, y, z) = (x z)’ (x’y’)’

Begin by writing

{(x z)’ (x’y’)’: A, *}

We expand this as follows:

{(x z)’: C, *}

{(x’y’)’: B, *}

{(x z)’: C’, *}

{(x’y’)’: B’, *}
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Now we expand the first line as:

{x: E, *}

{z: D, *}

{x: E’, *}

{z: D’C, C}

Putting these together:

{x: E, *}

{z: D, *}

{x: E’, *}

{z: D’C, C}

{(x’y’)’: B, *}

{(x z)’: C’, *}

{(x’y’)’: B’, *}

After we do the next expansion, we will have the following:

{x: E, *}

{z: D, *}

{x: E’, *}

{z: D’C, C}

{x’: D, *}

{y’: C, *}

{x’: D’, *}

{y’: C’B, B}

{(x z)’: C’, *}

{(x’y’)’: B’, *}

Next, inverting x and y, we get:

{x: E, *}

{z: D, *}

{x: E’, *}

{z: D’C, C}

{x: *, D}

{y: *, C}

{x: *, D’}
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{y: B, C’B}

{(x z)’: C’, *}

{(x’y’)’: B’, *}

Completing all the expansions, we get:

{x: E, *}

{z: D, *}

{x: E’, *}

{z: D’C, C}

{x: *, D}

{y: *, C}

{x: *, D’}

{y: B, C’B}

{x: D, *}

{z: E, *}

{x: D’, *}

{z: E’C’, C’}

{x: *, C}

{y: *, D}

{x: *, C’}

{y: B’, D’B’}

Problem

You have your choice of four subproblems that you can answer. Each earn will

earn you full credit for this question.

(a) Write a program that produces a sequence of conditional permutations

corresponding to any given Boolean function. Specify the function however

you like: as a truth table, as an algebraic expression, etc. (As always, use

whatever programming environment you like.)

(b) Write a program that produces the Boolean function corresponding to any

sequence of conditional permutations. (As always, use whatever program-

ming environment you like.)

(c) Answer the following questions:

i. Write sequences of conditional permutations that implement the fol-

lowing functions.

A. f(x, y) = x + y
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B. f(x, y, z) = (x′y′z′)′

C. f(x, y, z) = xy + xz + yz

ii. Find a different sequence of permutations than A,B,C,D,E above

that can implement arbitrary Boolean functions. Explain why your

choice works.

iii. Prove that no set of cyclic permutations of length less than five will

work.

(d) Make progress on any one of the following research topics (and earn sig-

nificant bonus credit beyond the value of this question):

i. Find a way of effectively minimizing the length of sequences of condi-

tional permutations.

ii. Find a way of effectively testing whether a sequence of conditional

permutations implements the Boolean function “identically zero” (or,

equivalent “identically one”).

iii. Find a way of effectively implementing Boolean functions through con-

ditional permutations at the circuit level. (For instance, propose a

programmable architecture based on this idea.)

Here “effectively” is entirely subjective. If you find a method that takes

polynomial time in the number of inputs for either the first two tasks then:

either your method is wrong; or I’m wrong about this whole topic in some

fundamental way; or you get the Turing Award.
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4. Counting Networks

Many fundamental multi-processor coordination problems can be expressed as

counting problems: processors collectively assign successive values from a given

range. This is sometimes referred to as the Bakery Problem. Since few North

Americans spend time waiting in line in bakeries, we’ll use the metaphor of a

visit to the Department of Motor Vehicles (DMV): when someone walks into a

DMV office, they are assigned a number and then served when it is called. With

enough people, merely handing out the numbers can become a bottleneck.

An elegant solution to this problem is a counting network. Such a network

implements a mod n shared counter with a network of balancer objects. Each

balancer is implemented with a Boolean variable in shared memory represent-

ing its state (0 for “up” and 1 for “down”), as well as two pointers to successor

balancers. These pointers are static; the topology of the network is fixed. Pro-

cesses shepherd tokens through the network, toggling balancers through atomic

read-modify-write (rmw) operations, and moving on to succeeding balancers: to

the “top” balancer if the state was “up” and to the “bottom” balancer if the

state was “down”. This is described by the following pseudo-code:

balancer = [toggle: boolean, next: array [O..1] of ptr to balancer]

traverse(b: balancer)

loop until leaf(b)

i := rmw(b.toggle := !b.toggle)

b := b.next[i]

end loop

end traverse

There are designated input balancers and output balancers. The output bal-

ancers have no successors; rather they point to indices (from 0 to n − 1 for a

mod n counter). It convenient to represent a balancer as two dots joined by a

vertical bar, as shown in Figure 5, and the full data structure of the counting

network by wiring up the balancers, as shown in Figure 2. The numbering of

the tokens indicates the order in which they arrived. (This is to illustrate what’s

going on; in fact, the tokens are not numbered.)

Figure 2 is an example of a counting network called the Batcher network, for

n = 4. Here tokens are placed on randomly chosen input balancers and routed

to output balancers. The DMV number that gets assigned is that of the index

number of the output wire. Note that the first token arrives at index 0, the

second at index 1, and so on. In general, the i-th token arrives at index i mod 4.
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This is the defining property of a counting network: it is counting the number of

input tokens without ever passing them all through a shared computing element!

Figure 1: A balancer.
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Figure 2: Routing of tokens in a counting network.

The Batcher network is constructed with a block called the Merge network.

The recursive construction of the Merge[8] network is shown in Figure 3. The

recursive construction of the Batcher[8] network, based on the Merge[8] net-

work, is shown in Figure 4. Merge and Batcher networks for larger values of n

that are powers of 2 are constructed similarly. At the bottom of the recursion,

Merge[2] and Batcher[2] networks both consist of a single balancer.
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Figure 3: the Merge[8] network.
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Questions

The length of a path through the balancing network is the number of balancers

that a shepherding process will visit from input to output when routing a token.

You are asked to analyze the lengths of such paths. The length of the paths, of

course, relates to how long it takes processors to route their tokens, so correlates

with the time complexity of the algorithm. (Since the data structures are defined

recursively for powers of 2, you might find it helpful to reason in terms of

recurrence relations.)

(a) What is the length of the paths through a Merge[n] network where n is

some power of 2?

(5 points)

(b) What is the length of the paths through a Batcher[n] network where n

is some power of 2? (10 points)
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5. Counting vs. Smoothing

An alternate view of a balance is as device that balances two integers x and y,

as shown in Figure 5.

x

y x y+

2

x y+

2

inputs outputs

Figure 5: a balancer.

The Batcher counting network presented in class has depth O(log2 n). In this

problem, we consider a network of balancers with depth log n.†

Consider the network shown in Figure 6.

(a) If the inputs x0, x1, x2, and x3 are 7, 3, 2 and 6, respectively, what are the

outputs y0, y1, y2, and y3?

(b) For an arbitrary input sequence, prove that y0 is the smallest output value

and y3 is the largest. Prove that the maximum difference between y0 and

y3 is two.

x3

x2

x1

x0 y0

y1

y2

y3

outputsinputs

Figure 6: the Smooth[4] network.

Consider the Smooth[n] network, n ≥ 2, shown in Figure 7. It is constructed

recursively with two Smooth[n/2] networks and n/2 balancers. The Smooth[2]

network consists of a single balancer.

†All logarithms are base 2.
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(c) Draw the Smooth[8] network. Prove that the maximum difference between

y0 and y7 is three.

(d) For the Smooth[n] network, n ≥ 2, prove that the maximum difference

between y0 and yn−1 is log n.
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x 0
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Figure 7: the Smooth[n] network.


