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This paper presents a methodology for translating iterative arithmetic computation, specified as high-level
programming constructs, into biochemical reactions. From an input/output specification, we generate biochemical
reactions that produce output quantities of proteins as a function of input quantities performing operations such as
addition, subtraction, and scalar multiplication. Iterative constructs such as “while” loops and “for” loops are
implemented by transferring quantities between protein types, based on a clocking mechanism. Synthesis first
is performed at a conceptual level, in terms of abstract biochemical reactions – a task analogous to high-level

program compilation. Then the results are mapped onto specific biochemical reactions selected from libraries – a
task analogous to machine language compilation. We demonstrate our approach through the compilation of a variety

of standard iterative functions: multiplication, exponentiation, discrete logarithms, raising to a power, and linear
transforms on time series. The designs are validated through transient stochastic simulation of the chemical kinetics.
We are exploring DNA-based computation via strand displacement as a possible experimental chassis.

1. Introduction

Recent accomplishments in synthetic biology portend of a coming revolution. From Salmonella that secretes

spider silk proteins,1 to yeast that degrades biomass into ethanol,2 to E. coli that produces antimalarial

drugs,3 the potential impacts are far-reaching.

The scope of the field is, in fact, broader. The J. Craig Venter Institute’s team has made significant

progress toward the goal of artificial life: a living bacterial cell with fully synthetic DNA.4,5 In engineering

terms, the objective is to assemble a machine (a synthetic bacterium) in which the functionality of all the

parts (the genes, the proteins that they code for, and how these interact biochemically) are understood. If

the machine works, this vindicates the scientific understanding; if it doesn’t – and surely it won’t at first –

then new understanding can be achieved by examining where and how it breaks. Of course, with a working

blueprint for a synthetic machine, new functionality can be engineered robustly and effectively.

The set of constitutive parts that can be used for genetic manipulation in synthetic systems is vast.

Comprehensive repositories of genetic data have been assembled – some public, some commercial – cataloging

genes, their DNA sequences, and their products. A concerted effort has been made to assemble repositories

of standardized and interoperable parts for synthetic applications. The platforms used will depend on the

application, but the technology for synthesizing DNA is becoming routine: firms have started offering custom-

gene synthesis through e-commerce websites (the going rate is $0.49 per base pair). So, in a real sense, the

hardware for synthetic biology exists, i.e., the technology and infrastructure for obtaining cells with custom-

designed genes. The instruction set is, to a large extent, known, i.e., genes and their function, cataloged in

libraries. The challenge is: how can we write code with these instructions on this type of hardware?

Conceptually, the rules of biochemistry are straight-forward: each biochemical reaction is a primitive

process that specifies how and at what rate different types of proteins combine to form other types of proteins.

The complexity stems from the dynamics at play among the multitude of coupled reactions operating on

the different protein types, asynchronously and in parallel. Techniques for analyzing such processes are well

established.6 However, synthesizing computation with such mechanisms requires entirely new techniques –

and an entirely new mindset.

One of the great successes of computer engineering has been in abstracting and scaling the design

problem. The physical behavior of transistors is understood in terms of differential equations – say, with

models found in tools such as SPICE.7 However, the design of circuits proceeds at a more abstract level – in

terms of switches, gates, and functional units. Software is conceived of and validated independently of the

hardware platform. This modular approach makes the design tractable; furthermore, it permits a systematic
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exploration of different configurations, leading to optimal designs. Although driven by experimental expertise,

synthetic biology has reached a stage where it calls for a similar degree of modularization and abstraction.
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Fig. 1: Analogy between compiling code for hardware and for biochemistry.

2. Overview

Our approach brings a design perspective: we tackle the problem of synthesizing biochemical reactions that

implement specified input/output functionality. From a specification in a high-level language like C or Pascal,

we generate biochemical reactions that produce output quantities of proteins as a function of input quantities,

performing operations such as addition, subtraction, and scalar multiplication. Iterative constructs such as

“while” loops and “for” loops are implemented by transferring quantities between protein types, based on a

clocking mechanism. We demonstrate our approach through the compilation of a variety of standard iterative

functions: multiplication, exponentiation, discrete logarithms, raising to a power, and linear transforms on

time series. The designs are validated through transient stochastic simulation of the chemical kinetics.

2.1. Computation with Biochemistry

Interesting biochemistry typically involves complex molecules such as proteins and enzymes. Within the

confines of a cell, the quantities of such molecules are often surprisingly small: on the order of tens, hundreds,

or thousands of molecules of each type. At this scale, individual reactions matter and the problem must be

modeled discretely.6

In our view of biochemical computation, the quantities of proteins are whole numbers (i.e., non-negative

integers). We will refer to these quantities as “registers”. Biochemical reactions alter these quantities: the

reactions fire repeatedly, modifying the protein quantities by small integer amounts. Consider the reaction

a + b
fast
−→ 2c. (1)

When this reaction fires, one molecule of a is consumed, one of b is consumed, and two of c are produced.

(Accordingly, a and b are called the reactants and c the product.) Each reaction has an associated rate (listed

above the arrow in our notation). Given several reactions, the probability of each firing is proportional

both to its rate and to the quantities of its reactants present. Although we refer to rates in relative and

qualitative terms – e.g., “fast” vs. “slow” – these are, in fact, quantitative values that are either deduced

from biochemical principles or measured experimentally. The functionality of a biochemical system can be

analyzed using stochastic simulation.6,8,9

Our contribution is to tackle the problem of computation at this abstract level – working not with specific

molecular types but rather with arbitrary types (a, b, c, etc.). This is illustrated in Figure 1. For conventional

hardware, programs are specified in a high-level language like C; a compiler translates this into assembly



language; then an assembler produces the machine code. In our bio-design flow, we begin with the same

sort of high-level description. (We use Verilog, a hardware description language.10) Our prototype compiler

called VERB (Verilog Elements for Register-Based Biochemistry) compiles these specification into generic

biochemical reactions. Then this design is mapped on a chemical substrate. The end result is a description

of the actual biochemistry: protein-protein reactions or DNA interactions.

2.2. Compiling the Programs into Biochemistry

A possible experimental chassis for our method is the mechanism of DNA-based computation advocated by

Erik Winfree’s group at Caltech.11 They have shown that the kinetics of arbitrary chemical reactions can be

implemented through DNA strand-displacement reactions. They provide an assembler that accepts a set of

biochemical reactions with nearly any rate structure and delivers the corresponding DNA sequences for the

displacement reactions. Reaction rates are controlled by designing sequences with different binding strengths;

the binding strengths are controlled by the length and sequence composition of toeholds.11 Our contribution

can be positioned as the “front end” of the compilation flow; the DNA assembler and experimental chassis

described by these authors constitute the “back-end.”

3. Related Work and Context

There has been considerable research directed at the question of computation with genetic regulatory mech-

anisms.12 DNA and RNA-based computation have been explored theoretically and demonstrated experimen-

tally.13–15 Mathematical expertise from control and dynamical systems has been applied to the analysis of

biochemical systems.16 Oscillatory mechanisms, suitable for the sort of clocking used in our designs, have

been demonstrated experimentally.17 Samoilov, Arkin and Ross established a comprehensive analytic frame-

work for studying the dynamics of biological systems in terms of the signal processing functions that they

perform.18 Soloveichik, Cook, Winfree and Bruck discuss theoretical aspects of molecular computation.19

The concepts of register-based computation and clocking that we use are due to these authors.19

4. A Toolkit for Biochemical Arithmetic

Scalar Multiplication and Addition

|z| = a

b
|x| + c

d
|y|

Reactions:

bx −→ az

dy −→ cz

Fig. 2: A biochemical module for addition

and scalar multiplication. When the first reac-

tion fires, it consumes b molecules of x and pro-

duces a molecules of z. When the second reaction

fires, it consumes d molecules of y and produces c

molecules of z. When both reactions have fired to

completion, the number of molecules of z will be

the scaled sum of the number molecules x plus the

number of molecules of y.

We describe elements of flexible toolkit of functional

modules. In our view of biochemical computation,

the input quantities of proteins are non-negative in-

tegers. Computation is implemented by biochemical

reactions. These fire repeatedly, modifying the pro-

tein quantities by small integer amounts; the end re-

sults are output quantities of proteins. The challenge

in setting up such computing, of course, is that the

biochemical reactions execute asynchronously and in

parallel.20

The computation that we propose in the modules

below is exact and independent of the specific val-

ues of the rates, although it requires that the rates

in different categories differ by a sufficient amount.

For instance, we assume that when a “fast” reaction

can fire it does so – repeatedly, until it runs out of

reactants – before a “slow” reaction ever fires.

4.1. Addition and Scalar Multiplication

The first and simplest of these computations is ad-

dition with scalar multiplication. We can implement



this by merely choosing reactions with the correct stoichiometry. This is shown in Figure 2. (Here and

throughout we use | · | to denote the quantity of a type of molecule.)

4.2. Multiplication

A biochemical construct for performing multiplication is shown in Figure 3. In this set of reactions, note that

none can fire until the first one does, producing a molecule of type i. When it does, it initiates an iteration of

a loop: the quantity of z increases as the second reaction fires repeatedly until there is no more y remaining.

Once this process terminates, the third and fourth reactions fire, ending the iteration and restoring y to its

initial value. In each iteration, the quantity of x is decremented by one and the quantity of z is incremented

by y. The final result is a quantity of z equal to the initial quantity of x times the quantity of y.

4.3. More Complex Arithmetic

Modules for computing exponentiation, discrete logarithms and raising to a power, are shown in Figures 4, 5,

and 6, respectively. With the latter, our scheme can be used to implement arbitrary polynomial functions;

hence, in principle, it could be used to approximate complex functions through Taylor series expansions.

Multiplication

|z| = |x| ×| y|

Pseudo-code:

while x > 0 {

z = z + y

x = x - 1

}

Reactions:

x
slowest
−→ i

i + y
fastest
−→ i + y′ + z

i
fast
−→ ∅

y′
slow
−→ y

Fig. 3: A biochemical module for

multiplication. The module consumes

molecules of x one at a time, adding the

quantity of y to the quantity of z each time.

(Here i and y′ are intermediate types; it is

assumed that no molecules of these types

are present initially. The symbol ∅ as a

product indicates “nothing,” meaning that

the type degrades into products that are no

longer tracked or used.)

Exponentiation

|y| = 2|x|

Pseudo-code:

y = 1

while x > 0 {

y = 2 * y

x = x - 1

}

Reactions:

c + 2y
fast
−→ c + y

c
medium
−→ ∅

x
slow
−→ i

i + y
faster
−→ i + 2y′

i
fast
−→ ∅

y′
medium
−→ y

Fig. 4: A biochemical module for ex-

ponentiation. First, a pair of reactions set

the quantity of y to 1. Then molecules of x

are consumed one at a time, doubling the

quantity of y each time. (Here c and y′ are

additional types; it is assumed that initially

there is some non-zero quantity of c, and

zero quantity of y′.)



Logarithm

|y| = log2(|x|)

Pseudo-code:

while x > 1 {

x = x/2

y = y + 1

}

Reactions:

b
slow
−→ a + b

a + 2x
faster
−→ c + x′ + a

2c
faster
−→ c

a
fast
−→ ∅

x′
medium
−→ x

c
medium
−→ y

Fig. 5: A biochemical module for com-

puting a base-2 logarithm. The input x

repeatedly halves itself; each time it does so,

y is incremented by one. (Here a, b, c and x′

are are additional types; it is assumed that

initially there is some non-zero quantity of

b, and zero quantity of a, c and x′.)

Raising to a Power

|y| = |x||p|

Pseudo-code:

y = 1

d = 0

while p > 0 {

w = x

while w > 0 {

d = d + y

w = w - 1

}

y = d

d = 0

p = p - 1

}

Reactions:

c + 2y
fast
−→ c + y

c
medium
−→ ∅

p
slowest
−→ a

a + x
medium
−→ b + a + x′

b + y
fastest
−→ y′ + d + b

b
faster
−→ ∅

y′ fast
−→ y

a
slow
−→ e

e + y
faster
−→ e

e + x′ faster
−→ e + x

e
fast
−→ ∅

d
slower
−→ y

Fig. 6: A biochemical module for com-

puting raising to a power. First, a pair

of reactions set the quantity of y to 1. Then

a pair of nested loops achieves the computa-

tion: the inner loop computes |x| times the

current result (starting with 1); the outer

loop does this operation |p| times. (Here a,

b, c, d, e, x′, and y′ are are additional types.

It is assumed that that quantities of all of

these except for c are initially zero; the ini-

tial quantity of c is any non-zero value.)



4.4. Clocking

An important constraint in our design methodology is the timing captured in the relative rates of the

biochemical reactions. With modules such as multiplication described above, there is an implicit ordering of

the reactions. To achieve this, the reaction rates must sometimes be separated by orders of magnitude: some

much faster than others, some much slower. This may be unrealistic.

To overcome this issue, we have have proposed a technique that we call “module-locking”.21 The scheme

involves adding a key requirement to each phase of the computation. Keysmiths are produced occasionally;

if other keys are present, they quickly disappear – before they can produce their key. Only if no other keys

are present will they produce their key. This ensures that at most one type of key is present (thus allowing

only one part of the loop to fire at a time); also it ensures that only one key of that type is present (thus

allowing for re-locking). The template for reactions with this functionality is:

∀i : ∅
slow
−→ keysmithi

∀i : keysmithi

slow
−→ keyi

∀i : keyi

slow
−→ ∅

∀i, j : keyi + keysmithj

fast
−→ keyi

(2)

This is for all i, j phases of the computation, e.g., steps in an operation like multiplication. (The symbol ∅

as a reactant indicates that the reaction does not alter the quantity of the reactant types, perhaps because

the quantity of these is large or replenishable; in such cases we can assume that the quantity is simply unity

and adjust the rate accordingly). The first reaction of each phase must be modified so that it depends on

the key:

keyi + reactants → products + keyi. (3)

Typically, the key will be a catalyst, appearing as both a reactant and a product, but this need not be the

case. With locking, our method synthesizes robust computation that is nearly rate independent, requiring at

most two speeds (“fast” and “slow”). The trade-off is with respect to the size of the solution: more reactions

are needed. Further details are given in our paper on the topic.21

5. Compiling Iterative Code

By combining arithmetic operations and our clocking mechanism, we can implement iterative operations

such as linear transforms on time series. Such operations are useful for performing filtering operations.

Example 1

Consider an application that calls for biochemistry that performs a filtering operation such as computing

a moving average. Given a noisy input signal X[n], a moving average filter produces an output signal Y [n]

that is a smoother version of the input. The function is

Y [n] =
1

2
X[n] +

1

2
X[n − 1].

where the n-th value is the current value and the (n − 1)-st value is the previous value of each signal. The

iterative operation can be specified as follows (we use the syntax of Verilog10):

[1] module MA(clk, X, Y);

[2] input X;

[3] input clk;

[4] output Y;

[5] reg Xn;

[6] always

[7] begin



[8] Y= (1/2 * X) + (1/2 * Xn);

[9] Xn= X;

[10] end

[11] endmodule

We translate this specification into a set of biochemical reactions, as follows. Each operation is translated

into a biochemical reaction with the protein types that correspond to the variables. All these reactions are

keyed, according to clock phases. These reactions are show in Figure 7. For simplicity, here we omit the

details of how the keys are generated. Key-keysmith reactions of the form of Equation 2 should be included

for key0, key1, and key2.

R1: key0 + X
fast
−→ Xa + Xb + key0

R2: key0 + Y
fast
−→ key0

R3: key1 + 2Xn

fast
−→ Y + key1

R4: key2 + 2Xb

fast
−→ Y + key2

R5: key2 + Xa

fast
−→ Xn + key2

CR1: key2

slow
−→ keysmith0

CR2: keysmith0

slow
−→ key0

CR3: key0

slow
−→ keysmith1

CR4: keysmith1

slow
−→ key1

CR5: key1

slow
−→ keysmith2

CR6: keysmith2

slow
−→ key2

Fig. 7: Biochemistry implementing the moving-average filter.

We simulate and validate our designs with transient stochastic simulation.9 The simulation results shown

in Figure 8, illustrate the functionality of the design: the moving average smooths high-frequency noise. Here,

the input X is shown in green; it is a noisy sinusoid. The output Y is shown in red; note that it is a clearer

sinusoidal waveform.

Fig. 8: Input and output waveforms for a biochemical moving-average filter. The input quantity X is shown

both as points from the simulation and as the ideal curve. The output Y is shown in red. The green curve

shows where the value of X is after the average delay of the system in order to be time-aligned with the red

output curve.



Table 1: Compilation Results

deserializer vector matrix multiplier integrator differentiator

Reactions 27 28 14 19

Registers 23 18 4 10

Clocks 2 5 3 4

6. Additional Design Examples

We briefly discuss a few other designs that we synthesized with our compiler. All perform iterative arithmetic

on non-negative integer values; these integer values correspond to time-varying quantities of input and output

proteins.

• The deserializer is simply an 8-element shift register. Instead of operating on bits, it operates on

integer values. This module is useful as a starting point for convolution-based algorithms and in

signal decoding.

• The vector-matrix multiplier multiplies a 3-element input vector by a fixed 3x3 matrix to obtain

an output vector. It can be trivially expanded to higher dimensions; the only limitation is that it

has nonnegative integers for input and output.

• The integrator implements a “bipolar” encoding: its inputs and outputs are represented as as the

difference of two protein quantities. While each of these quantities is a nonnegative integer, their

difference can be any integer, positive or negative. It computes a running sum of its input values. In

order to ensure that the output quantities do not increase without bound, an “equalize” operation

is implemented. This reduces both the positive and negative output quantities by the same amount

until one is zero.

• The differentiator operates with this same bipolar encoding. It computes the running difference of

the last two values.

The parameters of the biochemical designs that our compiler produces are shown in Table 1: the number of

reactions, the number of registers and the number of clock phases, for each.

7. Discussion

The concept of chemical reaction networks as a program formalism has been discussed in the literature.19,22,23

Prior work established the formalism from a theoretical perspective. For instance, it has been shown that

chemical reaction networks are computationally universal – that is to say, a chemical reaction network can

be found to compute every function.24 Interesting examples have been shown.14,24

And yet, to our knowledge, we are the first to consider the formalism from a design perspective. We

advocate a modular and automated flow for synthesizing computation with biochemistry. The computation

is specified in terms the requisite input/output behavior. It is compiled into an abstract chemical reaction

network – a task analogous to “high-level” program compilation. Then the results are mapped onto specific

biochemical components, selected from libraries – a task analogous to “machine-level” program compilation.

Our designs are robust to perturbations: molecules can degrade and the quantities can fluctuate; the

result of the computation will still be correct. Furthermore, our designs are rate-independent: although we

require that some reactions be faster than others, the result of the computation never depends on the actual

rates (i.e., k, the rate of a reaction, never appears in the functions that are computed).

Although conceptual for the time being, our method has potential applications in domains of synthetic

biology such as biochemical sensing and drug delivery. By deliberately applying design methodologies, one

could engineer computational control over biological processes, designing reactions that produce specific

outputs in response to different combinations of inputs. For instance, decision feedback equalization could

be implemented for drug deliver applications. Filtering operations could be performed. The inputs would be



time-varying quantities of proteins; the outputs would be high-pass, low-pass or band-pass functions of the

frequency of the changes in these quantities.
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